← 返回
储能系统技术 储能系统 多物理场耦合 ★ 5.0

钙循环热能储存与吸附增强制氢耦合系统

Coupling system of calcium looping thermal energy storage and adsorption-enhanced hydrogen production

作者 Haocheng Sun · Zhiwei Geab · Zhihan Yao · Liang Wang · Xipeng Lin · Yakai Bai · Shuang Zhang · Haisheng Chen
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 325 卷
技术分类 储能系统技术
技术标签 储能系统 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The multifield coupling mechanism in the quasi-in-situ reactor was investigated.
语言:

中文摘要

摘要 基于钙循环(CaL, Calcium Looping)的吸附增强蒸汽甲烷重整(SE-SMR)是实现低碳氢气生产的重要方法。然而,现有的原位反应器难以长期连续稳定地生产氢气。本研究提出了一种基于CaL的新型准原位SE-SMR反应器,并建立了包含多反应耦合的多物理场模型。研究阐明了该反应器中传热传质及反应强化的作用机制,识别了影响制氢过程的关键参数。在穿透前期阶段,储存的热量驱动重整反应进行,使氢气平均纯度维持在95.62%,同时实现较高的碳捕集率;氢气产率达到3.61,表明甲烷得到了高效重整与转化。在穿透前期更换策略下,反应器性能在第二次更换后趋于稳定,并总体保持与穿透前期相当的高性能水平。此外,CaL的储热特性有助于降低反应器对外部热量的需求,在热源条件波动的情况下增强了系统的运行稳定性。这些结果凸显了CaL过程中热-质耦合关系在强化制氢过程中的关键作用,为开发适用于太阳能驱动系统的长期、高性能制氢解决方案提供了有价值的理论依据。

English Abstract

Abstract CaL(Calcium Looping)-based Sorption-Enhanced Steam Methane Reforming (SE-SMR) is an essential method for achieving low-carbon hydrogen production . However, existing in-situ reactors struggle to produce H 2 continuously over long periods. This study proposes an innovative quasi-in-situ SE-SMR reactor based on CaL and develops a multi-physical field model with multiple reaction couplings. The study elucidates the mechanisms of heat and mass transfer, as well as reaction enhancement, and identifies the key parameters influencing the hydrogen production process in this reactor. During the pre-breakthrough phase, stored heat drives the reforming reaction, sustaining an average H 2 purity of 95.62% and a high carbon capture rate. A hydrogen yield of 3.61 demonstrates efficient methane reforming and conversion. Under the pre-breakthrough replacement strategy, the reactor performance stabilizes after the second replacement and generally maintains the high-performance level of the pre-breakthrough phase. Additionally, the heat storage properties of CaL help to reduce the heat demand of the reactor, enhancing system stability under fluctuating heat source conditions. These findings highlight the crucial role of the heat-mass coupling relationship in CaL in enhancing the hydrogen production process, offering valuable insights for developing long-term, high-performance hydrogen production solutions in solar-powered systems.
S

SunView 深度解读

该钙循环储热-制氢耦合技术对阳光电源储能系统具有重要启示。其多物理场耦合建模方法可应用于PowerTitan储能系统的热管理优化,特别是波动热源下的稳定性控制与ST系列PCS的能量调度策略。准原位反应器的连续产氢机制为光伏制氢一体化方案提供技术参考,可结合iSolarCloud平台实现预测性维护。该研究的热质传递耦合机理对提升储能系统在可再生能源波动工况下的响应性能具有借鉴意义,支撑阳光电源构建光储氢多能互补解决方案。