← 返回
光伏发电技术 ★ 5.0

结合新型变异策略与牛顿-拉夫森方法的差分进化算法用于增强光伏参数提取

Differential evolution algorithm featuring novel mutation combined with Newton-Raphson method for enhanced photovoltaic parameter extraction

语言:

中文摘要

准确提取光伏(PV)电池和组件的参数对于优化性能、建模以及预测在不同环境条件下的行为至关重要。在此背景下,本文提出一种新颖的混合算法——基于均值的差分进化与牛顿-拉夫森法(Mean Differential Evolution with Newton-Raphson, MDE-NR),该算法融合了均值差分进化(MDE)与牛顿-拉夫森(NR)方法的优势,以提高参数提取的精度。MDE以其在探索与开发之间实现良好平衡的能力著称,采用一种创新的基于均值的变异策略,降低了早熟收敛的风险。然而,尽管MDE能够有效进行全局搜索,要达到尽可能低的误差通常仍需进一步精细化处理。此时NR方法发挥作用,利用MDE生成的最优参数作为初始猜测值,实现快速的局部收敛。MDE与NR方法在MDE-NR中的结合显著降低了最终估计中的均方根误差(RMSE)。通过对单二极管模型(SDM)、双二极管模型(DDM)和光伏组件模型(PMM)的广泛测试,并与多种著名的元启发式算法进行对比,验证了MDE-NR算法的有效性,在30次独立运行中实现了极小的RMSE值,标准差低至10E-19到10E-21,远优于其他10种元启发式算法的表现。该算法展现出快速的收敛速度,并在计算效率方面优于同类算法。此外,MDE-NR能够有效应对变化的环境条件,例如恒定辐照度下温度变化或恒定温度下辐照度变化的情况,在不同光伏技术条件下均获得高度精确的结果。这种混合方法使MDE-NR成为一种高效且可靠的工具,可用于精确提取光伏参数,在准确性和计算效率两方面均实现了显著提升。

English Abstract

Abstract Accurate parameter extraction in photovoltaic (PV) cells and modules is crucial for optimizing performance, modeling, and predicting behavior under varying environmental conditions. In this context, we propose a novel hybrid algorithm, Mean Differential Evolution with Newton-Raphson (MDE-NR), which combines the strengths of Mean Differential Evolution (MDE) and the Newton-Raphson (NR) method to enhance the precision of parameter extraction. MDE, recognized for its ability to balance exploration and exploitation, employs an innovative mean-based mutation strategy that reduces the risk of premature convergence. However, while MDE effectively performs a global search, achieving the lowest possible error often requires further refinement. This is where the NR method comes into play, offering fast local convergence by using the optimal parameters generated by MDE as initial guesses. The combination of these two methods in MDE-NR significantly reduces the Root Mean Square Error (RMSE) in the final estimation. The effectiveness of the MDE-NR algorithm is validated through comprehensive comparisons with well-known metaheuristic algorithms across Single Diode Model (SDM), Double Diode Model (DDM), and Photovoltaic Module Model (PMM), achieving minimal RMSE values with standard deviations as low as 10E-19 to 10E-21 over 30 runs, far superior to those of 10 other metaheuristic algorithms. The algorithm demonstrates rapid convergence and outperforms its counterparts in computational efficiency. Moreover, MDE-NR effectively handles varying environmental conditions, such as constant irradiation with variable temperature and vice versa, achieving highly accurate results across different PV technologies. This hybrid approach establishes MDE-NR as a highly effective and reliable tool for the precise extraction of PV parameters, providing significant improvements in both accuracy and computational efficiency.
S

SunView 深度解读

该混合算法对阳光电源SG系列光伏逆变器的MPPT优化具有重要应用价值。MDE-NR算法通过精确提取光伏组件参数(单/双二极管模型),可显著提升逆变器在变温变辐照条件下的最大功率点追踪精度,RMSE达10E-19量级。该技术可集成至iSolarCloud平台,实现不同光伏技术的精准建模与预测性维护,优化SG系列逆变器的自适应控制策略,提升发电效率与系统可靠性,尤其适用于1500V高压系统的参数辨识与性能诊断。