← 返回
光伏发电技术 ★ 5.0

基于天气类型可信度预测与多模型动态组合的短期光伏功率预测方法

A short-term PV power forecasting method based on weather type credibility prediction and multi-model dynamic combination

作者 Haonan Dai · Zhao Zhen · Fei Wang · Yuzhang Lin · Fei Xu · Neven Z. Dui
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 326 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Classification modeling framework (CMF) is a double-edged sword.
语言:

中文摘要

准确的短期光伏发电功率预测结果可为电网管理提供有力支持。光伏发电在短期内表现出不同的日发电出力模式,这些模式与每日天气类型密切相关。现有研究表明,相较于统一建模,合理划分天气类型并对每种天气类型分别建模是提高预测精度的有效途径。然而,这种分类建模框架是一把双刃剑,其有效发挥作用的前提是能够准确预测次日的天气类型。一旦天气类型判断错误,错误地应用相应的功率预测模型将导致预测精度下降,但现有研究大多忽视了这一问题。为此,本文提出一种基于天气类型可信度预测与多模型动态组合的短期光伏功率预测方法。首先,通过提取实测辐照度特征建立天气类型识别模型,以判别历史中天气类型未知的日子所属的天气类型。其次,采用独热编码表示原始天气类型中的概率信息,然后通过从日前获取的数值天气预报(NWP)中提取特征,构建基于注意力机制的深度学习模型,实现对天气类型可信度的预测。最后,通过建立可信度等级(CL)优化机制,针对不可信场景构建基于Transformer的统一预测模型,针对可信场景构建基于双Q学习的分类预测模型。仿真结果表明,与未引入分类建模以及未考虑天气类型预测结果可信度的模型相比,所提方法的预测精度分别提高了4.46%和2.79%。

English Abstract

Abstract Accurate short-term photovoltaic (PV) power forecasting results can provide solid supports for power gird management. The PV power generation exhibits different daily output patterns in short-term time scale, which are closely related to daily weather types. The existing research proves classifying weather types appropriately and classification modeling for each weather type is an effective approach to improve the accuracy, comparing to unified modeling. However, this classification modeling framework is a double-edged sword, with the prerequisite for its effective works is the accurate prediction of weather types in day-ahead. Once the weather type is misjudged, the wrong application of power forecasting models will lead to a decrease in forecasting accuracy, but existing research has mostly ignored this issue. To this end, this paper proposes a short-term PV power forecasting method based on weather type credibility prediction and multi-model dynamic combination. Firstly, a weather type identification model is established by extracting the measured irradiance features, to identify historical days with unknown weather types. Secondly, one-hot encoding is employed to represent the probability information within the original weather type, then an attention mechanism based deep learning model is constructed by extracting features from day-ahead acquired numerical weather prediction (NWP) to achieve the prediction of weather type credibility. Finally, by establishing a credibility level (CL) optimization mechanism, the unified forecasting model based on Transformer and classification forecasting model based on double Q learning are established for unreliable and credible scenes respectively. Simulation results show that the accuracy of the proposed method is improved by 4.46% and 2.79% respectively compared with the models that do not introduce classification modeling and do not consider the credibility of weather type prediction results.
S

SunView 深度解读

该天气类型可信度预测与多模型动态组合的短期光伏功率预测方法,对阳光电源iSolarCloud智慧运维平台及储能系统协同控制具有重要价值。通过引入天气分类可信度评估机制,可显著提升SG系列逆变器的功率预测精度(提升4.46%)。该方法可集成至iSolarCloud平台的预测性维护模块,结合ST系列PCS储能变流器实现更精准的充放电策略优化。基于Transformer的统一预测模型与双Q学习分类模型的动态切换机制,为PowerTitan储能系统的日前调度提供可靠数据支撑,有效降低预测误差导致的经济损失,提升光储一体化系统整体运营效率。