← 返回
储能系统技术 储能系统 跟网型GFL ★ 4.0

TriLiteNet:多任务视觉感知轻量化模型

TriLiteNet: Lightweight Model for Multi-Task Visual Perception

作者 Quang-Huy Che · Duc-Khai Lam
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 跟网型GFL
相关度评分 ★★★★ 4.0 / 5.0
关键词 TriLiteNet模型 全景驾驶感知 车辆检测 可行驶区域分割 车道线分割
语言:

中文摘要

高效感知模型对高级驾驶辅助系统ADAS至关重要,这些应用需要快速处理和响应以确保现实环境中的安全性和有效性。为满足感知模型实时执行需求,本研究引入TriLiteNet模型,可同时管理全景驾驶感知相关的多个任务。TriLiteNet旨在优化性能同时保持低计算成本。BDD100k数据集实验结果显示,模型在车辆检测、可行驶区域分割和车道线分割三个关键任务上达到竞争性能。具体而言,TriLiteNetbase车辆检测召回率85.6%、可行驶区域分割mIoU 92.4%、车道线分割Acc 82.3%,仅2.35M参数和7.72 GFLOPs计算成本。所提模型包含仅0.14M参数的微型配置,以最小计算需求提供多任务解决方案。在嵌入式设备上评估延迟和功耗,TriLiteNet两种配置均显示低延迟和推理时合理功耗。通过平衡性能、计算效率和可扩展性,TriLiteNet为现实自动驾驶应用提供实用可部署解决方案。

English Abstract

Efficient perception models are essential for Advanced Driver Assistance Systems (ADAS), as these applications require rapid processing and response to ensure safety and effectiveness in real-world environments. To address the real-time execution needs of such perception models, this study introduces the TriLiteNet model. This model can simultaneously manage multiple tasks related to panoramic driving perception. TriLiteNet is designed to optimize performance while maintaining low computational costs. Experimental results on the BDD100k dataset demonstrate that the model achieves competitive performance across three key tasks: vehicle detection, drivable area segmentation, and lane line segmentation. Specifically, the TriLiteNetbase demonstrated a recall of 85.6% for vehicle detection, a mean Intersection over Union (mIoU) of 92.4% for drivable area segmentation, and an Acc of 82.3% for lane line segmentation with only 2.35M parameters and a computational cost of 7.72 GFLOPs. Our proposed model includes a tiny configuration with just 0.14M parameters, which provides a multi-task solution with minimal computational demand. Evaluated for latency and power consumption on embedded devices, TriLiteNet in both configurations shows low latency and reasonable power during inference. By balancing performance, computational efficiency, and scalability, TriLiteNet offers a practical and deployable solution for real-world autonomous driving applications. Code is available at https://github.com/chequanghuy/TriLiteNet.
S

SunView 深度解读

该轻量化多任务模型对阳光电源智能巡检系统具有借鉴意义。阳光无人机和巡检机器人需要同时执行目标检测、路径规划和障碍识别等多任务。该TriLiteNet的多任务架构和极低参数量(0.14M-2.35M)可部署在阳光巡检设备的嵌入式平台,实现光伏组件缺陷检测、热斑识别和电站环境感知的并行处理。在资源受限的边缘设备上,该模型的低延迟和功耗优势可延长无人机续航时间,提升巡检效率。结合阳光SG逆变器的边缘AI能力,该轻量化技术可实现组串级智能监控,支持大规模光伏电站的实时故障诊断和预测性维护。