← 返回
光伏发电技术
★ 5.0
不同光伏组件和气候条件下光伏发电性能评级的差异及其驱动因素
Variation in Photovoltaic Energy Rating and Underlying Drivers Across Modules and Climates
| 作者 | Kevin S. Anderson · Joshua S. Stein · Marios Theristis |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏组件 气候特定能量评级 特定发电量 温度 参考地点 |
语言:
中文摘要
光伏组件性能受其固有特性和气象条件共同影响。尽管已知低辐照性能、光谱失配、温度系数等特性的影响,但在大范围地理区域内的量化研究仍不足。本研究基于气候特异性能量评级(CSER)和单位面积发电量指标,评估多种光伏技术在美国本土不同气候区的表现,并揭示性能差异的驱动因素。结果显示,CSER和单位面积发电量在不同地区差异分别超过10%和30%。温度对CSER影响最大,最高达13.1%,光谱效应在碲化镉组件中可导致4.9%的变化。参数估算方法的微小差异亦可引起CSER最多1.5%的偏差。此外,IEC 61853-4标准中的参考气候数据相较实际系统所在地气候数据高估CSER约2–4%。本文提出一组能更准确代表美国本土CSER分布的新参考地点,以替代现有IEC标准数据集。
English Abstract
The performance of photovoltaic (PV) modules is determined by the interplay between their inherent characteristics and the prevailing weather conditions. Although the impacts of different characteristics (e.g., low-light behavior, spectral mismatch, temperature coefficient, etc) are known, they have not been quantified over large geographic regions. This study uses the Climate Specific Energy Rating (CSER) and specific yield metrics as criteria to determine how different PV modules perform across climates in the contiguous United States (CONUS) and identifies the underlying drivers behind the observed variations. The annual CSER and specific yield of various PV technologies vary by more than 10% and 30%, respectively, across the CONUS. As expected, temperature has the most significant impact on CSER, affecting CSER by up to 13.1%, while spectral effects account for up to 4.9% variation in the case of cadmium telluride modules. Additionally, minor differences in parameter estimation procedures are shown to result in CSER differences of up to 1.5% in some climates. Furthermore, the IEC 61853-4 reference climatic datasets are found to overestimate CSER by 2–4% relative to climatic data for locations of actual PV systems in the United States. A new set of reference locations that accurately represents CSER across CONUS is proposed as an alternative to the IEC 61853-4 reference datasets.
S
SunView 深度解读
该研究对阳光电源SG系列光伏逆变器的MPPT算法优化和系统设计具有重要价值。研究揭示温度、光谱、低辐照等因素对不同组件技术的差异化影响,可指导逆变器针对不同气候区和组件类型优化MPPT策略,提升发电效率最多13%。气候特异性能量评级方法可应用于iSolarCloud平台的智能诊断功能,实现基于实际气候数据的精准发电预测和性能评估,替代传统IEC标准的2-4%高估偏差。研究提出的美国本土参考地点数据集,可为阳光电源北美市场的逆变器参数配置、系统方案设计提供更准确的本地化依据,提升产品竞争力。