← 返回
光伏发电技术
★ 5.0
基于太阳能利用的新型混合储能系统的热力学建模与分析
Thermodynamic modeling and analysis of a novel hybrid energy storage based on solar energy utilization
| 作者 | Xinyue Haoa · Volodymyr Ierin · Oleksii Volovyk |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 326 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel [hybrid energy](https://www.sciencedirect.com/topics/engineering/hybrid-energy "Learn more about hybrid energy from ScienceDirect's AI-generated Topic Pages") storage based on solar energy utilization is proposed. |
语言:
中文摘要
摘要 本文提出并研究了一种结合太阳能集热器、光伏组件以及冷热电联供(CCHP)单元的新型混合储能系统。考虑了CCHP单元中两种不同形式制冷循环的制冷能力。所提出的工程技术方案可实现电能、热能和冷能的同时生产并向用户供应,同时能够高效地储存和利用太阳能、所发电能以及机械压缩制冷循环中超临界CO2蒸汽的热量。通过基于能量法的参数化分析,评估了运行条件变化对系统性能特性的影响。分析结果表明,该系统具有较高的往返效率RTE(最高达0.137)和综合储能效率SSEE(最高达2.77),分别反映了CCHP单元和储能系统的能量利用效率。当制冷循环中的蒸发温度较低、换热器HE2出口温度较低、低压储罐压力较低以及高压储罐压力较高时,系统可达到最大效率。在机械压缩制冷循环中较低的蒸发温度还有利于实现热储能系统的最高效运行,从而获得较高的高温流体利用率HFUR(最高达0.87)。研究还表明,由于喷射式制冷循环制冷能力较低且适用运行工况范围有限,其应用是不合理的;尽管引入该循环会使系统结构显著复杂化,但系统能量效率的提升却并不明显(仅提高0.1–9.4%)。
English Abstract
Abstract This paper proposes and studies a novel hybrid energy storage system with solar collectors, photovoltaic modules, and a combined cooling, heating, and power (CCHP) unit. The cold production in the CCHP unit in two versions of the refrigeration loop is considered. The proposed technical solution provides simultaneous production and supply of electricity, heat, and cold to consumers. It also allows efficient accumulation and use of solar energy, generated electricity, and the heat of superheated CO 2 vapor in the mechanical compression cooling cycle. The effect assessment of changes in operating conditions on the system’s characteristics has been performed using parametric analysis based on energy methods. The analysis results show that the proposed system provides a high value of RTE (up to 0.137) and SSEE (up to 2.77) reflecting the energy efficiency of the CCHP unit and the storage system, respectively. The maximum system’s efficiency is achieved at low evaporating temperatures in the cooling cycle and at the heat exchanger HE2 outlet, low pressures in the low-pressure tank, and high pressures in the high-pressure tank. The low evaporating temperatures in the mechanical compression cooling cycle also ensure the most efficient implementation of the heat storage system, and as a result, the maximum values of the hot fluid utilization rate HFUR (up to 0.87). The study also shows that the ejector cooling cycle application is irrational due to low cooling capacity and a limited operating condition range. Its use does not lead to a noticeable increase in system energy efficiency (0.1–9.4 %) with a noticeable system design complication.
S
SunView 深度解读
该光伏-储能-冷热电联供混合系统对阳光电源ST系列储能变流器和SG光伏逆变器的协同应用具有重要参考价值。研究中的CO2机械压缩制冷循环与热储能耦合技术,可启发PowerTitan储能系统在工商业场景中集成冷热电三联供功能。系统往返效率(RTE)达0.137及储能效率(SSEE)达2.77的优化策略,为iSolarCloud平台开发多能互补智能调度算法提供理论依据,特别适用于数据中心、工业园区等高冷热负荷场景的能源管理优化。