← 返回
光伏发电技术 ★ 5.0

基于新型混合元启发式算法的风能/光伏/电池混合系统的多目标优化

Multi-objective optimization of a Wind/Photovoltaic/Battery hybrid system using a novel hybrid _meta_-heuristic algorithm

作者 Pascalin Tiam Kapen
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 327 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel hybrid metaheuristic algorithm based on grey wolves and whales optimizers.
语言:

中文摘要

混合可再生能源系统为传统能源提供了可持续且环境友好的替代方案。然而,高昂的能源成本以及可再生资源的间歇性等问题阻碍了这些系统的广泛应用。本研究的主要创新在于开发了一种结合灰狼优化器和鲸鱼优化器的混合元启发式算法。该新型算法被用于优化一个风能/光伏/电池混合系统的容量配置,该系统旨在满足喀麦隆班焦市福措·维克多理工大学学院行政办公室的能源需求,当地频繁的停电严重干扰了学术活动。为了实现系统性能的最优化,本文构建了一个数学框架,以最小化三个关键目标函数:平准化能源成本、净现值成本以及电力供应缺失概率。研究中评估了多种元启发式算法,包括灰狼优化器、粒子群优化器、非洲秃鹫优化器、人工大猩猩群体优化器和鲸鱼优化器。所提出的混合算法通过在螺旋形轨迹上迭代更新捕食者位置,表现出更优越的性能。该算法实现了5.3077×10⁴美元的净现值成本、0.17990美元/kWh的平准化能源成本以及0.000541的电力供应缺失概率等最优值。此外,与现有方法相比,该混合算法在收敛趋势、统计性能和计算效率方面均表现更优。本研究结果表明,所提出的算法在优化混合可再生能源系统方面具有巨大潜力,特别是在计算资源受限、对计算效率和解的可靠性要求较高的环境中。其持续优于现有算法的能力表明,该方法可广泛应用于各类能源系统设计挑战,从小型农村微电网到大规模可再生能源基础设施,均可在实际应用中带来经济和运行层面的双重优势。

English Abstract

Abstract Hybrid renewable energy systems offer a sustainable and environmentally friendly alternative to traditional energy sources. However, challenges such as high energy costs and the intermittent nature of renewable resources hinder the widespread adoption of these systems. The main innovation of this work lies in the development of a hybrid meta -heuristic algorithm that combines the Grey Wolf and Whale Optimizers. This novel algorithm is applied to optimize the sizing of a wind/photovoltaic/battery hybrid system designed to meet the energy demands of administrative offices at the University Institute of Technology Fotso Victor in Bandjoun, Cameroon, where frequent power outages disrupt academic activities. To achieve optimal system performance, a mathematical framework was developed to minimize three key objective functions: levelized cost of energy, net present cost, and loss of power supply probability. Multiple meta -heuristic algorithms, including Grey Wolf, Particle Swarm, African Vultures, Artificial Gorilla Troops, and Whale Optimizers, were evaluated in the study. The proposed hybrid algorithm, which updates the positions of hunters iteratively in a spiral-shaped trajectory, demonstrated superior performance. It achieved optimal values of 5.3077E + 04 US$ for net present cost, 0.17990 US$/kWh for levelized cost of energy, and 0.000541 for loss of power supply probability. In addition, the hybrid algorithm showed better convergence trends, statistical performance, and computational efficiency compared to existing methods. The findings of this work demonstrate the potential of the proposed algorithm as a powerful tool for the optimization of hybrid renewable energy systems, particularly in resource-constrained settings where computational efficiency and solution reliability are critical. Its ability to consistently outperform existing algorithms suggests its applicability to a wide range of energy system design challenges, from microgrids in rural areas to large-scale renewable energy infrastructures, providing both economic and operational benefits in real-world applications.
S

SunView 深度解读

该混合元启发式算法对阳光电源风光储系统优化具有重要价值。研究针对风电/光伏/储能混合系统的容量配置优化,可直接应用于ST系列储能变流器与SG系列光伏逆变器的系统集成方案设计。算法在平准化度电成本、净现值成本和缺电概率三目标优化方面表现优异,为iSolarCloud平台的智能容量规划模块提供算法创新思路。特别适用于微电网场景下PowerTitan储能系统的经济性优化配置,提升资源受限地区可再生能源系统的投资回报率和供电可靠性。