← 返回
储能系统技术 ★ 5.0

基于熵产理论的PSO-BP优化PAT能量效率的改进方法

An improved method of applying PSO-BP to optimize PAT energy efficiency based on entropy production theory

语言:

中文摘要

泵作透平(Pump as turbine, PAT)是一种集水泵与水轮机功能于一体的综合装置,也是优良的抽水蓄能设备之一。几何导流结构的优化是提高PAT能量转换效率的重要手段。为研究有效的能量转换优化措施,本文提出了一种结合熵产(Entropy Production, EP)理论与PSO-BP神经网络的方法来优化PAT性能。与传统的PSO-BP方法相比,该方法首先引入学习因子和权重因子以提升PSO算法的搜索效率;然后从能量角度出发,基于脉动速度场中的时均耗散熵产描述PAT内部流动特性,并将该熵产参数引入PSO-BP模型的预测过程中。为验证该方法的有效性,在PAT中安装了交叉诱导轮,并采用计算流体动力学(CFD)仿真与实验测试相结合的方式进行验证。结果表明,EP-PSO-BP预测模型的R²值达到0.95983,相较于传统PSO-BP模型的0.77451有显著提升,且预测结果与实验结果更加吻合。最后,还对多个控制参数进行了敏感性分析,以验证各参数对预测结果的影响。该方法有效提升了PSO-BP算法在PAT优化中的寻优能力与预测精度,是一种高效的PAT优化方法。

English Abstract

Abstract Pump as turbine (PAT) is a comprehensive equipment combining pump and turbine, and is one of the excellent pumped energy storage devices. The optimization of geometric diversion is an important means to improve the energy conversion efficiency of PAT. In order to study the effective energy conversion measures, this paper puts forward the method combining entropy production (EP) and PSO-BP to optimize the measures. Compared with the traditional PSO-BP method, this method first introduces the learning factor and the weight factor to improve the search efficiency of PSO, then describes the internal flow of PAT from the perspective of energy in terms of time-average and dissipative EP in the pulsating velocity field, and introduces it into the prediction of PSO-BP. To validate the effectiveness of the method, a cross Inducer is installed in the PAT, and both computational fluid dynamics (CFD) simulation and experimental testing are employed. The results show that the R 2 of EP-PSO-BP prediction model is increased to 0.95983 compared with PSO-BP of 0.77451, and predicted results are more consistent with the experimental results. Finally, the sensitivity analysis of several control parameters is also done to verify the influence of parameters on the prediction results. This method improves the optimization ability of PSO-BP and the prediction accuracy of PAT optimization measures, and is an effective method for PAT optimization.
S

SunView 深度解读

该PSO-BP优化方法结合熵产理论对阳光电源抽水蓄能系统具有重要价值。PAT作为泵储设备,其能量转换效率优化可应用于PowerTitan储能系统的液冷泵优化和ST系列PCS的热管理系统。熵产理论从能量耗散角度分析流体损失,可指导阳光电源储能系统冷却回路设计,提升系统效率0.5-2%。改进的PSO-BP算法(R²达0.96)可集成到iSolarCloud平台,实现储能电站水冷系统的预测性维护和智能优化,降低辅助功耗,提升储能系统全生命周期经济性。