← 返回
基于并行估计器的模块化多电平变换器虚假数据注入攻击防护
Cyber-Secured Modular Multilevel Converters against False-Data Injection Attacks through Concurrent Estimators
| 作者 | Masoud Amirrezai · Nima Tashakor · Amin Hashemi-Zadeh · Hans D. Schotten · Stefan Goetz |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年5月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 多电平 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 模块化多电平变换器 虚假数据注入攻击 并发估计器 网络攻击检测 电力系统弹性 |
语言:
中文摘要
近二十年来,模块化多电平变换器(MMC)等级联电路已成为中高压电网中的关键技术,广泛用于大功率变换、风电并网与电能质量调节,并有望参与构网运行。然而,其复杂的控制监控系统及电子器件的敏感性使其易受网络攻击。本文研究了MMC在虚假数据注入攻击(FDIA)下的运行安全性,提出一种结合模块级卡尔曼滤波与桥臂级神经网络估计器的并行估计算法,实现对复杂网络攻击的有效检测与抑制。仿真与实验结果表明,该方法在应对高级攻击时性能优于现有技术,且避免了高计算复杂度,显著提升了MMC及关键电力系统(如直流输电与数据中心供电)的网络安全韧性。
English Abstract
Over the past two decades, modular multilevel converters (MMCs) and similar cascaded circuits have become a key technology in the electricity grid, primarily for medium- and high-voltage applications. They perform important functions for grid stability as they convert, transport, and inject large power levels, connect wind farms, or compensate for power quality issues, and may in the future also contribute to grid forming. However, their complex control and monitoring subsystems as well as the sensitive nature of electronics turns them into a target for sabotage. This study investigates the operation of MMCs under various false data injection attacks (FDIA), e.g., in the power supply of data centers. The proposed solution uses two concurrent estimators, a module-level Kalman filter and an arm-level neural network estimator, to detect and mitigate complicated cyber-attacks. The proposed technique would significantly improve the resilience of MMCs against complex FDIAs and thus the resilience of critical power supplies, e.g., of DC lines and data centers. The simulations and experimental results demonstrate that the proposed detection technique outperforms state-of-the-art methods when facing sophisticated attacks and still avoids their often significant computational demands or complexity.
S
SunView 深度解读
该研究对阳光电源的大功率产品线网络安全具有重要参考价值。并行估计算法可应用于ST2000储能变流器、SG350HX光伏逆变器等MMC拓扑产品的控制系统,提升其抗网络攻击能力。特别是在构建电站级智能运维系统时,该方案可与iSolarCloud平台结合,为储能电站、光伏电站提供更可靠的数据安全保障。通过模块级卡尔曼滤波与神经网络估计的创新组合,可优化PowerTitan等大型储能系统的故障诊断算法,降低虚假告警率。这对提升阳光电源产品在数据中心、工业微电网等高可靠性场景的竞争力具有积极意义。