← 返回
储能系统技术
★ 5.0
一种基于中间介质的创新吸附式热能储存
STES)概念用于建筑电转热/冷应用:从实验动态到运行性能分析
语言:
中文摘要
摘要 本研究提出了一种用于建筑电转热与电转冷应用的创新吸附式热能储存(STES)系统,该系统采用液态制冷剂分配方式以及吸附反应器的直接蒸发/冷凝机制,避免了传统吸附技术中复杂且昂贵的真空阀门需求。系统采用一种浸渍型复合吸附剂CaCl₂@SG_25,并在实验室尺度上对其吸附等温线与动力学特性进行了研究。开发了一个动态模型,用于分析该STES系统在不同季节下的充放电运行模式,重点关注设计参数(如吸附动力学)和边界条件(如充电功率、冷凝/蒸发入口温度)。研究考察了关键运行指标,包括吸附特性、荷电状态(SOC)、能量储存密度(ESD)等。研究强调了SOC与空闲时间对放电性能、往返效率(RTE)及自放电率(SDR)的影响。同时指出了辅助设备负荷(如干式冷却器/干式加热器/热泵)能耗与充电能量之间的能量比率。结果表明,在较高充电功率下,吸附动力学对系统动态性能具有显著影响;但在较低充电功率下,其影响较为有限。与此同时,随着充电功率的增加以及冷凝/蒸发入口温度的降低,STES系统的动态性能得到改善,实现了199 kWh/m³的能量储存密度。此外,提高SOC可增强系统的充放电性能。当在20%的较低SOC下运行时,放电过程中的能量储存密度显著下降72.7%。与夏季空闲时间影响较小不同,较长的空闲时间会增加热量泄漏,在一个月内的自放电率达到10.9%,导致往返效率为104%(相较于直接放电的93%)。
English Abstract
Abstract This study presents an innovative sorption thermal energy storage (STES) system for building power-to-heat and cooling applications, utilizing liquid refrigerant distribution and sorption reactors’ direct evaporation/condensation, eliminating the need for complex/expensive vacuum valves as in conventional sorption technologies. The system employs an impregnated CaCl 2 @SG_25 composite sorbent, with a lab-scale examination of its isotherms and kinetics. A dynamic model was developed to analyze the STES system’s charging and discharging modes across seasons, focusing on design factors (i.e., sorption kinetics) and boundary conditions (i.e., charging power and condensation/evaporation inlet temperatures). Key operational metrics are examined including sorption characteristics, state of charge (SOC), and energy storage density (ESD). The study highlights how SOC and idle times affect discharging performance, round-trip efficiency (RTE), and self-discharge rates (SDR). The energy ratio of auxiliary loads (i.e., dry cooler/dry heater/heat pump) to charging energy is indicated. The results imply that the sorption kinetics appreciably affect the system dynamics at higher charging powers; however, its effect is limited at lower charging powers. Meanwhile, the STES system’s dynamics improve with increased charging power and reduced condensation/evaporation inlet temperatures, achieving ESD of 199 kWh/m 3 . Furthermore, increasing SOC enhances the system’s charging and discharging performance. Operating at a lower SOC of 20 % significantly reduces discharging ESD by 72.7 %. Unlike the limited effect of idle time in summer, longer idle times increase heat leakage, with SDR of 10.9 % within a month, leading to RTE of 104 % compared to 93 % for direct discharging.
S
SunView 深度解读
该吸附式储热技术为阳光电源储能系统拓展了热能存储新路径。其199 kWh/m³的能量密度和104%往返效率,可与ST系列PCS协同构建电转热/冷综合能源系统。液态制冷剂分配技术简化了系统复杂度,适合集成到PowerTitan储能方案中,为建筑光储热一体化提供季节性储能支撑。SOC管理策略和自放电率控制经验,可借鉴优化电化学储能的能量管理算法,提升iSolarCloud平台对多能互补系统的智能调度能力。