← 返回
储能系统技术
★ 5.0
金属氢化物储氢罐的新概念——数值建模、仿真与评估
Novel concepts for metal hydride storage tanks – Numerical modeling, simulation and evaluation
语言:
中文摘要
摘要 氢气的高效、节省空间且安全的储存是实现可再生能源系统所必须克服的主要挑战之一。金属氢化物是一种可能的解决方案。然而,关键挑战在于识别和开发最具前景的金属氢化物材料,以及为实现高效吸氢/脱氢过程(在能耗/储存损耗和充放时间方面)设计最优的储氢罐结构。基于这一背景,本文旨在确定中低温金属氢化物材料与三种不同储氢罐设计概念之间的适宜组合。目标是明确每种组合中最匹配的材料,从而为未来在固定式和移动式应用中的金属氢化物储氢罐提供可行的解决方案。为实现该目标,采用有限元方法(FEM),在COMSOL Multiphysics中对材料与结构设计方案进行了建模与仿真。结果从氢气吸收速率、随时间变化的温度分布以及整个储存过程所需的能量需求等方面进行分析。结果表明,对于本文研究的低温金属氢化物而言,储氢罐结构设计的重要性相对较低,因而允许更多面向具体应用的设计灵活性。而对于中温金属氢化物,所考察的结构方案则表现出差异显著的结果。若以快速吸氢和最小外部加热时间为优化目标,则所提出的矩形储氢罐设计可能是一个有前景的选择,其所需加热能量仅为圆柱形结构方案的28% / 29%。若目标是实现尽可能完全的氢气吸收,则本文研究的基础设计概念——即由金属氢化物材料以螺旋形式卷绕于圆柱形罐体内的结构——是最优方案;该方案可使中温金属氢化物达到约3.6 wt-%的氢载量。在最优结构中,低温金属氢化物的总氢吸收量约为1.4 wt-%。对于运行温度较高的结构方案,在通入氢气前对储氢罐进行预热可能有助于改善吸氢过程(本研究中仅作初步探讨)。
English Abstract
Abstract The efficient, space-saving and safe storage of hydrogen is a major challenge that needs to be overcome for enabling renewable energy systems. Metal hydrides are a possible solution. But the key challenge is the identification and development of the most promising metal hydride material as well as the ideal tank design for an efficient hydrogen absorption / desorption in terms of energy demand / storage losses and loading / unloading time. Against this background this paper aims to identify suitable combinations of medium and low-temperature metal hydride materials in combination with three different tank design concepts. The goal is to determine which material fits best for each combination and could thus be a suitable solution for a future implementation in stationary and mobile applications of metal hydride storage tanks. To achieve this goal a finite element method (FEM) modeling and simulation of materials and construction designs in COMSOL Multiphysics is realized. The results are analyzed in terms of hydrogen absorption rate, temperature profile over time, and the necessary energy demand for the overall storage process. The results show that for the low-temperature metal hydride investigated here, the tank design is of subordinate importance, allowing for more application-specific design. For medium-temperature metal hydrides, the investigated construction concepts show heterogeneous results. For fast hydrogen absorption and minimal external heating time, the suggested rectangular tank design might be a promising option, requiring only 28% / 29% of the heating energy of the cylindrical concepts. If the goal is to achieve the most complete hydrogen absorption, the base design concept investigated here, consisting of a cylindrical tank with metal hydride material rolled up in a spiral, is the most favorable solution; achieving a hydrogen loading of about 3.6 wt–% for the medium-temperature metal hydride. The low-temperature metal hydride achieves a total hydrogen absorption of around 1.4 wt-% in the optimum concept. For concepts with higher operating temperatures, preheating the storage tank before feeding in the hydrogen could improve the absorption process (only examined here).
S
SunView 深度解读
该金属氢化物储氢技术对阳光电源储能系统具有战略价值。研究表明中温氢化物在矩形罐体设计下可降低71%加热能耗,为PowerTitan储能系统与氢储能耦合提供优化方向。低温氢化物1.4wt%储氢密度可应用于充电站分布式储氢,配合ST系列PCS实现氢-电协同调度。FEM仿真方法可借鉴用于储能热管理优化,提升iSolarCloud平台预测性维护能力,推动可再生能源制氢-储能一体化解决方案落地。