← 返回
储能系统技术 储能系统 多电平 ★ 5.0

一种在级联H桥多电平变换器中同时最大化故障后电压并最小化共模电压的容错方法

A Fault-Tolerant Approach for Simultaneously Maximizing Post-Fault Voltage and Minimizing Common-Mode Voltage in Cascaded H-Bridge Multilevel Converters

作者 Mahdi Aslanian · Ashkan Raki · Yousef Neyshabouri · Hossein Iman-Eini
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年9月
技术分类 储能系统技术
技术标签 储能系统 多电平
相关度评分 ★★★★★ 5.0 / 5.0
关键词 级联H桥多电平变换器 容错方法 选择性谐波消除 共模电压 功率回流
语言:

中文摘要

本文提出一种基于选择性谐波抑制(SHM)技术的级联H桥(CHB)多电平变换器新型容错控制方法。该方法通过向相电压不平衡的相中注入共模电压(CMV),实现线间电压平衡,并利用最少的健康单元达到最大相电压利用率。通过在SHM开关角度中引入新约束,避免过调制,并通过注入适当CMV最大化线间电压。然而,CMV基波分量(FCMV)可能导致CHB各相功率分布不均,引起逆变器功率倒流,对非再生型CHB尤为不利,因其会抬升单元直流母线电压。为此,本文在SHM调制中将最小化FCMV作为附加优化目标,以防止故障下的功率倒流。仿真与实验结果验证了该容错方法的有效性。

English Abstract

This paper introduces a new fault-tolerant method for cascaded H-bridge (CHB) multilevel converters based on Selective Harmonic Mitigation (SHM) technique. In the proposed method, balanced line-to-line voltages are achieved by injecting a common-mode voltage (CMV) into the unbalanced phase voltages when the number of healthy cells differs among phases. The injected CMV allows maximum phase utilization using minimum number of healthy cells. The suggested method imposes new constraints on SHM switching angles to avoid over-modulation. It also maximizes line-to-line voltage by injecting an appropriate CMV to the modulation waveforms. However, the fundamental component of CMV (FCMV) can cause uneven power distribution among CHB phases, leading to power flow-back in the inverter, which is problematic for non-regenerative CHB inverters as it increases the dc-link voltage of the cells. To avoid power flow-back during faulty conditions, minimizing FCMV is included as an additional objective in the SHM modulation technique. Simulation and experimental results confirm the effectiveness of the proposed fault-tolerant method.
S

SunView 深度解读

该容错控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。级联H桥拓扑在阳光电源中压储能系统中广泛应用,本文提出的SHM容错方法可在单元故障时最大化输出电压利用率,提升系统可用性。特别是最小化FCMV防止功率倒流的策略,直接解决了非再生型储能单元的直流母线过压风险,可应用于ST2236/2500UX等产品的冗余设计。该技术与阳光电源现有的智能诊断系统结合,可实现故障单元旁路后的自适应调制优化,减少系统降额运行损失,提升储能电站全生命周期可靠性和经济性,符合大型储能项目对高可用性的严苛要求。