← 返回
一种无需位置反馈且免疫逆变器非线性的PMSM驱动电感估计方法
A Position-Feedback-Free and Inverter-Nonlinearity-Immune Inductance Estimation Method for PMSM Drives without Signal Injection
| 作者 | Yangwei Zhou · Ziling Nie · Li Peng · Xudong Zou · Jun Sun · Lin Song |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年8月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 增量电感 电压矢量 电流斜率估计 电感观测器 在线估计 |
语言:
中文摘要
准确的在线增量电感L<sub>d</sub>、L<sub>q</sub>映射对基于模型的控制、无传感器观测及实时故障诊断至关重要。现有方法依赖离线测试或信号注入,存在速度慢、扰动系统、依赖转子位置和难以补偿逆变器非线性等问题。本文提出一种无需信号注入与位置反馈的电感估计算法,通过重构电压矢量序列形成可抑制死区畸变与器件压降的虚拟电压矢量。结合分段多采样线性回归提取电流斜率,实现抗噪声与死区干扰的电感估计。该方法具备三重协同优势:虚拟电压矢量框架、多采样电流斜率估计及无信号注入的位置无关观测器。实验验证表明,全工况下平均误差低于5%。
English Abstract
Accurate online maps of the incremental inductances Ld, Lq are critical to model-based drives, sensorless observers, and real-time fault diagnosis. Existing techniques either rely on slow, equipment-intensive offline tests or inject auxiliary signals that disturb the drive, depend on precise rotor position, and are difficult to calibrate against inverter nonlinearities. This paper sidesteps those limitations by recasting the fundamental voltage vector sequence as a differential virtual-voltage-vector that inherently rejects dead-time distortion and device voltage drops. A piece-wise multisample linear regression—applied only to the quasi-linear segment of each current trace—then yields a dead-time-immune, noise-resilient estimate of current slopes. The proposed approach introduces three mutually reinforcing advances: (i) a virtual-voltage-vector-oriented framework that inherently accounts for inverter non-linearities; (ii) a multi-sampling-based current-slope estimation strategy that is immune to dead-time effects and suppresses noise; and (iii) a signal-injection-free, rotor-position-independent inductance observer that is explicitly built on the first two advances, harnessing their accurate voltage modeling and derivative measurements. The proposed estimator is evaluated against the standard AC-standstill test and a current-slope online method, the mean error remains below 5% in every case. Validation spans the full operating range, including extreme load and speed transients.
S
SunView 深度解读
该无位置传感器电感估计技术对阳光电源储能与电驱产品具有重要应用价值。在ST系列储能变流器中,可实现PMSM飞轮储能系统的免传感器控制与在线参数自适应,提升系统可靠性并降低成本。对新能源汽车电机驱动产品,该方法可在全工况下实时更新Ld/Lq映射表,优化MTPA/弱磁控制精度,同时免疫SiC器件死区非线性影响。其虚拟电压矢量重构技术可直接应用于阳光电源三电平拓扑的死区补偿算法。多采样电流斜率估计方法还可集成至iSolarCloud平台,实现电机绕组匝间短路等故障的预测性诊断,平均误差<5%满足工业应用需求。