← 返回
基于自回归模型与递归最小二乘法的并网逆变器无模型死beat预测电流控制
Model-Free Deadbeat Predictive Current Control for Grid-Connected Inverters Using Autoregressive Model and Recursive Least Squares
| 作者 | Mostefa Kermadi · Aissa Rebai · Saad Mekhilef · Lotfi Baghli · Nadhir Mesbahi · Marizan Mubin |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 并网逆变器 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 无模型无差拍预测电流控制器 并网逆变器 数据驱动模型 自回归外生输入模型 参数失配鲁棒性 |
语言:
中文摘要
本文提出一种面向并网两电平逆变器的新型无模型死beat预测电流控制方法(MF-DBPC),适用于含阻感(R–L)滤波器的系统。该方法仅依赖电流与电压测量数据构建数据驱动模型,无需精确系统参数。核心在于采用带外生输入的自回归(ARX)模型结合递归最小二乘(RLS)算法实现参数在线辨识,显著提升动态适应性与抗参数失配能力。通过与滚动优化策略对比,仿真表明所提死beat控制方案在更低采样频率下仍可获得更优电流波形质量。实验验证了其在稳态与动态工况下的有效性及对滤波电感偏差的强鲁棒性。
English Abstract
This article presents a novel model-free (MF) deadbeat (DB) predictive current controller (MF-DBPC) tailored for grid connected two-level inverters incorporating resistance-inductance (R–L) filters. Unlike traditional approaches, the MF-DBPC leverages a data-driven model derived solely from current and voltage measurements, eliminating the need for explicit systems parameter inputs. Central to the MF-DBPC’s functionality is an autoregressive with exogenous input (ARX) model, complemented by a recursive least squares (RLSs) estimator for real-time parameter identification. This strategy offers enhanced adaptability to dynamic system conditions and achieves robustness against parameter mismatches inherent in grid-connected inverter systems. To demonstrate this, two distinct MF predictive control strategies have been benchmarked: one grounded in the DB control principle and the other utilizing a rolling optimization technique. Simulation analyses demonstrate that the MF-DBPC, driven by the DB principle, yields superior current waveform quality while requiring a sampling frequency five times lower than its rolling optimization technique. Experimental validation further confirms the efficacy of the MF-DBPC across steady-state and dynamic performance metrics. Notably, its robustness against filter inductance mismatches is highlighted, showcasing resilience under challenging real-world conditions.
S
SunView 深度解读
该无模型死拍预测电流控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。基于ARX-RLS的数据驱动方法可显著提升产品对滤波参数偏差的鲁棒性,解决大规模生产中电感容差导致的控制性能差异问题。相比传统模型预测控制,该方法在较低采样频率下仍能保证电流质量,可降低DSP/FPGA算力需求,优化PowerTitan等大型储能系统的成本结构。在线参数辨识能力可增强系统在电网阻抗波动、器件老化等工况下的自适应性,为构网型GFM控制器提供更可靠的底层电流环基础,提升电网适应性与长期运行稳定性。