← 返回
双向超高压增益直流变换器的建模与设计优化——面向电池单元集成电力电子系统
Modeling and Design Optimization of a Bidirectional Ultrahigh Gain DC/DC Converter for Cell-Integrated Power Electronics
| 作者 | Writtik Dutta · Ayan Mallik |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年12月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | DC-DC变换器 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 双向CLL谐振变换器 高压增益 软开关能力 E - GHA建模方法 优化框架 |
语言:
中文摘要
本文提出了一种基于CLL谐振结构的双向直流变换器的建模与优化方法,旨在实现高电压增益与增强的软开关能力。该变换器有效连接低压电池单元与高压直流母线,支持电网集成。研究引入增强型广义谐波近似(E-GHA)建模方法,结合高次谐波分析与电路寄生参数,精确量化损耗。为在满足高增益的同时最小化功率损耗,构建了多目标、多变量、多约束优化框架,用于谐振腔参数与控制变量的协同优化。实验研制了500 kHz原理样机,实现2.5–4 V与360 V之间的双向变换,负载范围25–100 W,放电与充电峰值效率分别达95.7%和95.3%。
English Abstract
This article presents the modeling and optimization of a bidirectional CLL-based resonant converter, designed for high voltage gain and enhanced soft-switching capability. The converter efficiently bridges low-voltage (LV) battery cells with a high-voltage (HV) dc bus, facilitating grid integration. The study introduces a new modeling approach, termed enhanced generalized harmonic approximation (E-GHA), which incorporates detailed harmonic analysis and circuit parasitic elements for accurate loss modeling. To achieve the required gain with minimal power loss, a multiobjective, multivariable, and multiconstraint optimization framework is developed to optimize the resonant tank parameters and operating control variables. To validate the proposed model, a proof-of-concept 500-kHz CLL resonant converter was developed, demonstrating bidirectional conversion between 2.5 and 4 V and 360 V at loads ranging from 25 to 100 W. The prototype achieves peak discharging and charging efficiencies of 95.7% and 95.3%, respectively.
S
SunView 深度解读
该双向超高增益DC/DC变换器技术对阳光电源储能与充电产品线具有重要应用价值。其2.5-4V至360V的宽范围电压变换能力可直接应用于ST系列储能变流器的电池单元级管理,实现单体电池与高压母线的直接连接,提升PowerTitan储能系统的模块化设计灵活性。E-GHA建模方法结合高次谐波与寄生参数分析,可优化阳光电源SiC/GaN器件在500kHz高频工作下的软开关性能,降低开关损耗。多目标优化框架对谐振腔参数与控制变量的协同设计,可提升充电桩OBC模块在宽负载范围(25-100W)下的效率表现。95%以上双向转换效率为ESS集成方案的电池均衡与能量管理提供技术参考,推动电池单元集成电力电子(Cell-IPE)架构在储能系统中的工程化应用。