← 返回
风电变流技术 ★ 5.0

ISI Net:一种集成可解释性与智能选择的新型集成学习范式用于精确风电功率预测

ISI Net: A novel paradigm integrating interpretability and intelligent selection in ensemble learning for accurate wind power forecasting

作者 Bingjie Liang · Zhirui Tianb
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 332 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Multi-stage data preprocessing boosting data quality and usability.
语言:

中文摘要

摘要 作为一种清洁能源,风能可以有效缓解能源危机并减少环境污染。准确的风电功率预测能够促进风电产业的快速发展。集成学习是一种广泛使用的风电功率预测方法,但现有的集成学习方法未能对子模型的权重进行解释,且在子模型的选择上缺乏准确依据。为解决上述问题,本研究提出了一种将智能选择与可解释性相结合的新型神经网络范式(ISI Net),用于风电功率预测。所提出的框架分为三个模块。在数据预处理模块中,采用灰色关联分析(Grey Relational Analysis, GRA)进行特征选择,以避免因特征过多而增加训练难度和复杂度;利用变分模态分解(Variational Mode Decomposition, VMD)进行数据去噪,并采用 Hampel 标识器(Hampel Identifier, HI)处理异常值。在 ISI Net 模块中,首先对模型池中的基础模型进行预测并记录其预测结果;设计了一种并行双通道架构,以实现模型的智能选择与可解释性,同时获得可解释的模型权重和智能选择结果。在集成学习模块中,对经 ISI Net 自动筛选后的模型预测结果进行学习集成,从而有效捕捉模型的非线性特征。本研究使用来自不同地区的四个数据集对所提范式进行了六次验证。实验结果表明,ISI Net 能够为模型池中的各个模型准确分配权重,实现良好的可解释性;经过智能选择后的模型在所有数据集上的集成效果均优于未经智能选择的情况;学习集成在有效提取非线性特征方面的优势优于直接集成和线性集成。此外,还对整个框架的各个子模块进行了复杂度分析,验证了该范式的适用性与有效性。

English Abstract

Abstract As a clean energy source, wind energy can effectively alleviate the energy crisis and reduce environmental pollution . Accurate wind power forecasting can promote the rapid development of the wind power industry. Ensemble learning is a widely used wind power forecasting method, but existing ensemble learning methods do not explain the weights of sub models, and there is no accurate basis for the selection of sub models. To address these issues, the study proposes a novel neural network paradigm that integrates intelligent selection and interpretability (ISI Net) for wind power forecasting. The proposed framework is divided into three modules. In the data preprocessing module, Grey Relational Analysis (GRA) is used for feature selection to avoid increasing training difficulty and complexity due to excessive features. Variational Mode Decomposition (VMD) is used for data denoising, and Hampel identifier (HI) is used for outlier processing. In the ISI Net module, basic models in the model pool are predicted and the prediction results are recorded. A parallel dual channel architecture is designed to achieve intelligent selection and interpretability of models, and to obtain interpretable model weights and intelligent selection results simultaneously. In the ensemble learning module, learning ensemble is performed on the model prediction results automatically selected using ISI Net, effectively capturing the nonlinear features of models. We validated our paradigm six times using four datasets from different regions. The experimental results showed that ISI Net can accurately assign weights to various models in the model pool for interpretability, and the ensemble effect of the models after intelligent selection was better than that without intelligent selection on all datasets. The advantage of learning ensemble in effectively extracting nonlinear features is superior to direct ensemble and linear ensemble. And a complexity analysis was conducted on each sub module of the entire framework, demonstrating the applicability and effectiveness of the paradigm.
S

SunView 深度解读

该ISI Net风电功率预测范式对阳光电源储能系统具有重要应用价值。其集成智能选择与可解释性的集成学习方法,可应用于ST系列PCS的能源管理系统优化:通过精准预测风电出力,优化PowerTitan储能系统的充放电策略;GRA特征选择和VMD降噪技术可提升iSolarCloud平台的预测性维护能力;可解释的模型权重分配机制有助于GFM/GFL控制策略的自适应调节。该方法对风光储一体化场景的功率平滑控制和调度优化具有直接借鉴意义,可增强阳光电源新能源并网解决方案的智能化水平。