← 返回
基于移动储能系统的主动配电网数据驱动电压-无功协调调度
Data-Driven Volt-VAR Coordinated Scheduling With Mobile Energy Storage System for Active Distribution Network
| 作者 | Yang Mi · Changkun Lu · Chunxu Li · Jinpeng Qiao · Jie Shen · Peng Wang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 主动配电网 柔性资源 电压无功协调调度 不确定性环境 混合整数线性规划 |
语言:
中文摘要
为改善主动配电网(ADN)的电压分布与运行成本,提出一种融合灵活资源特别是移动储能系统在ADN与交通网耦合环境下的协调调度策略。结合去噪扩散概率模型构建数据驱动的日前场景生成方法,利用历史数据学习实际与预测功率曲线的误差关系,建立可再生能源出力的概率分布模型。采用随机机会约束优化方法量化不确定环境下的电压运行风险,并充分挖掘ADN中多资源在时空尺度上的调控能力。通过线性化处理将ADN与交通网耦合模型转化为混合整数线性规划问题。基于IEEE 33节点配电网与15节点交通网的仿真验证了所提方法的有效性。
English Abstract
In order to improve the voltage distribution and operation cost for ADN, A scheduling strategy is designed to integrate flexible resources, particularly mobile energy storage systems, within the coupling of ADN and TN, under an uncertain environment. A day-ahead Volt-VAR coordinated scheduling framework for ADN and TN can be proposed through incorporating a data-driven day-ahead scenario generation method based on denoising diffusion probabilistic model. First, the historical data may be employed to learn the error relationship between real power curves and predicted power curves for generating RES scenarios. The probability distribution for prediction error is constructed which can describe the day-ahead output power curve of RES. Subsequently, a SCCO approach is employed to measure voltage operating risk in uncertain environment, which can effectively utilize the controllability of different resource at timescale and spatial scale in ADN to fulfill the anticipated operational requirement. Finally, The ADN coupled with TN model can be linearized and converted into the mixed-integer linear programming method. Numerical simulations based on the IEEE 33-bus distribution system coupled with 15-node transportation network may verify the effectiveness of the proposed method.
S
SunView 深度解读
该移动储能协调调度技术对阳光电源PowerTitan储能系统与充电桩业务具有重要应用价值。研究提出的数据驱动场景生成方法可集成至iSolarCloud平台,通过去噪扩散模型提升光伏出力预测精度,优化ST系列储能变流器的日前调度策略。移动储能与配电网耦合模型为阳光电源开发车载储能与V2G技术提供理论支撑,可实现充电桩、分布式光伏、固定储能的多时空尺度协同控制。随机机会约束优化方法能有效量化电压运行风险,提升PowerTitan系统在高比例新能源场景下的电压-无功调节能力,降低配电网运行成本,为构建源网荷储一体化解决方案提供技术路径。