← 返回
风电变流技术
★ 5.0
双区域含风电电力系统的分散式合成惯性控制
Decentralized Synthetic Inertia Control for Two-Area Power Systems With Wind Integration
| 作者 | Aldo Barrueto · Hector Chavez · Karina Barbosa |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年2月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 双区域电力系统 分散式合成惯性控制 电力系统稳定性 通信系统限制 频率最低点优化 |
语言:
中文摘要
随着可再生能源通过电力电子接口大量接入,现代电力系统稳定性可能下降。现有合成惯性控制多基于单区域均匀频率假设,难以反映多区域系统的实际动态特性,且常忽略通信系统的局限性。本文提出一种适用于含风电双区域系统的分散式合成惯性控制策略,充分考虑区域间频率差异及通信约束。基于智利电力系统实际运行数据的动态仿真结果表明,该方法在维持系统稳定性和优化频率最低点方面性能接近集中式控制,且仅依赖本地变量,无需区域间实时通信,更具实用性。
English Abstract
Modern power systems may experience decrease in stability due to the increased integration of variable generation sources that depend on power electronics converters. A common control strategy is to incorporate synthetic inertia from wind turbines, typically using state-feedback control in a single-area power system model that assumes uniform frequency. As power systems become more interconnected, different frequency behaviors can emerge in multiple areas, casting doubt on current methods that do not consider multi-area stability. Furthermore, most single-area synthetic inertia methods ignore the limitations of communication systems in real power systems. This paper proposes a decentralized synthetic inertia control strategy for a two-area power system with wind power. This approach accounts for the actual behavior of power systems in different areas and the limitations of communication systems in real scenarios. Numerical results, derived from dynamic models using actual operating data from the Chilean Power System, demonstrate that the decentralized control performs comparably to centralized control in maintaining power system stability and optimizing frequency nadir. However, the decentralized control has the advantage of relying solely on local variables, eliminating the need for communication links between areas during operation.
S
SunView 深度解读
该分散式合成惯性控制技术对阳光电源储能和风电变流产品具有重要应用价值。可直接应用于ST系列储能变流器和风电变流器的GFM控制系统,优化其在多区域电网中的频率支撑能力。特别是对PowerTitan大型储能系统,该技术可提升其在无通信条件下的分布式协同控制性能。通过本地变量实现合成惯性响应,避免了跨区域通信依赖,提高了系统可靠性。这一技术思路也可借鉴到SG系列光伏逆变器的虚拟同步机控制中,增强其电网支撑能力。建议在新一代储能产品中采用该控制策略,提升阳光电源在大规模新能源接入场景下的技术竞争力。