← 返回
系统并网技术
★ 5.0
基于“潘笛”式多振荡水柱
M−OWC)防波堤系统的宽带波能转换
| 作者 | Yinong Hu · Yong Cheng · Saishuai Dai · Zhiming Yuan · Atilla Incecik |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 333 卷 |
| 技术分类 | 系统并网技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 波浪能转换器 俘获带宽 设计理念 固有频率 海况 |
语言:
中文摘要
摘要 多数波浪能转换装置(WEC)由于其设计理念主要集中于将WEC的固有频率与海况谱中的单一峰值频率相匹配,因而捕获带宽相对较窄。本文提出一种创新性的“潘笛”式WEC结构,并将其集成于防波堤中。该设计包含多个振荡水柱(OWC)单元,每个单元具有不同的固有频率。通过策略性地调节这些频率,使其覆盖更宽范围的海况谱,而不仅仅匹配峰值频率,从而实现更宽的捕获带宽。本研究采用经过实验验证的计算流体动力学(CFD)方法,评估所提出设计在不规则波浪中的水动力性能。这一新概念通过面对波浪的前部腔室、中部腔室和后部腔室,分别合理吸收不规则波浪中的短周期、中等周期和长周期成分,具备不同共振周期的内部水柱。此外,多腔室设计将水柱的晃动运动转化为活塞式运动,不仅放大了子腔室内部的波面高度,还加速了从腔壁末端的涡旋脱离过程。因此,系统在整个波周期范围内均能保证水动力效率高于0.5,其最大值可达0.82。同时,波浪衰减性能也得到改善,尤其对于长周期波浪,相较于单腔室OWC(S-OWC)系统最大可实现47.8%的降低效果。研究发现,采用独立PTO单元的变吃水M−OWC系统优于共用PTO单元的设计。实际工程中完全有可能通过优化设计子腔室的数量与吃水深度,获得较宽的波能 harvesting 带宽。这些研究成果推动了WEC-防波堤系统在不同能量密度海域的大范围部署应用。
English Abstract
Abstract Majority of wave energy converters (WEC) have a relatively narrower capture due to their design philosophy, which focus on matching WEC’s natural frequency to a single peak frequency of a seastate spectrum. This paper introduces an innovative “Pan Flute”-type WEC embedded into a breakwater. This design consists multiple oscillating water column (OWC) units, each with a distinguished natural frequency. By strategically tuning these frequencies to span a broader sea-state spectrum rather than merely matching the peak frequency, the system achieves a wider capture bandwidth. An experimentally validated Computational Fluid Dynamics (CFD) methodology was adopted to assess the hydrodynamic performance of the proposed design in irregular waves. This new concept possesses different resonant periods of internal water column to reasonably absorb short-, moderate-, and long-period components of irregular waves by facing-wave, central and rear chambers, respectively. Additionally, the multi-chamber design transforms the sloshing motion of water column into the piston-type motion, amplifying the wave elevation inside sub-chambers as well as accelerating the vortex detachment from the chamber-wall end. Consequently, the hydrodynamic efficiency is guaranteed to be higher than 0.5 for all wave periods, and its maximum value achieves 0.82. The wave attenuation is also improved, especially for long-period waves where there is a maximum 47.8% of reduction compared with S-OWC system. The varying-draft M−OWC system adopting separate PTO units is found to be superior to adopt a corporate PTO. It is practically possible to design the optimised number and draft of sub-chambers to obtain a broad harvesting width of wave energy. These findings promote the WEC-breakwater systems to be deployed in extensive sea areas regardless of energy density .
S
SunView 深度解读
该宽频波浪能转换技术对阳光电源储能系统具有重要借鉴价值。其多腔室分频段谐振设计理念可应用于ST系列PCS的多模块协同控制:通过不同储能单元针对性响应电网不同频段扰动,实现宽频段功率调节。类似'排箫式'多振荡水柱的解耦设计,可优化PowerTitan储能系统中多PCS并联拓扑,各单元独立PTO(功率输出)策略优于集中控制,提升全工况效率。该宽带能量捕获思想启发iSolarCloud平台开发多时间尺度协同优化算法,使储能系统在不同波动场景下均保持高效运行,拓展应用场景适应性。