← 返回
光伏发电技术
★ 5.0
因果机制赋能的零标签学习在新建光伏电站发电功率预测中的应用
Causal Mechanism-Enabled Zero-Label Learning for Power Generation Forecasting of Newly-Built PV Sites
| 作者 | Pengfei Zhao · Weihao Hu · Di Cao · Rui Huang · Xiawei Wu · Qi Huang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年9月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 新建光伏电站 发电量预测 无监督零标签学习 因果结构 域适应网络 |
语言:
中文摘要
针对新建光伏(PV)电站因缺乏历史发电数据导致的功率预测难题,本文提出一种无需任何标注样本的无监督零标签学习方法。通过挖掘不同电站间的不变因果结构,并利用因果机制提升目标电站的预测性能。设计了因果赋能的域自适应网络(CEDAN),结合内外注意力机制从时滞数据片段中提取发电因果关联,并构建域适应损失函数以对齐源域与目标域的因果分布差异。进一步扩展为分位数域适应损失以应对输出不确定性。联合优化域适应与预测损失,实现跨域不变因果机制的学习,从而在无标签情况下完成高泛化性功率预测。基于真实数据的实验表明,该方法在确定性与概率性预测上分别较现有最优迁移方法提升至少7.57%和8.37%。
English Abstract
Power forecasting of newly built photovoltaic (PV) sites faces huge challenges owing to the lack of sufficient training samples. To this end, this paper proposes an unsupervised zero-label learning method for power generation forecasting of newly built PV sites without relying on any historical power output data. The main idea is to extract invariant causal structures across different PV sites and leverage this causality to enhance the power forecasting performance on the newly built ones. In particular, a causality-enabled domain adaptation network (CEDAN) is designed to capture the causal mechanism of PV generation from the multiple fine-grain segments of time-lagged data. It relaxes the causal relationships to an associative structure which is further concretized as attention score vectors through the designed intra- and inter-variable attention mechanisms. To quantify the distribution discrepancies between source and target domain causal structures, a specific domain adaptation loss function is designed for the optimization of CEDAN. It is further extended to a domain adaptation quantile loss to handle the uncertainties of PV power output. By jointly minimizing the domain adaptation loss and power forecasting error/conditional quantile loss, an invariant power generation causal mechanism across data domains for a newly built PV site can be learned. This allows the proposed method to achieve accurate and highly generalized power generation forecasting for newly built PV sites without relying on labeled data. Extensive experiments utilizing real PV generation data demonstrate that the proposed method surpasses state-of-the-art transfer learning methods by 7.57% at least in deterministic forecasting and 8.37% at least in probabilistic forecasting.
S
SunView 深度解读
该零标签功率预测技术对阳光电源iSolarCloud智能运维平台和SG系列光伏逆变器具有重要应用价值。针对新建光伏电站缺乏历史数据的痛点,通过因果机制实现无标签跨域迁移学习,可直接应用于阳光电源新部署站点的发电预测模块。该方法提升7.57%的确定性预测精度,能优化iSolarCloud平台的智能诊断功能,提升MPPT算法在新站点的初期运行效率。分位数域适应技术可增强PowerTitan储能系统的能量管理策略,通过概率性预测优化充放电决策。因果不变机制的挖掘思路为阳光电源跨区域、跨气候带的产品标准化部署提供了数据驱动的理论支撑,缩短新站点调试周期,降低运维成本。