← 返回
储能系统技术 储能系统 多电平 ★ 5.0

一种适用于多种运行工况的模块化多电平换流器集成电池储能系统电磁暂态仿真模型

An Electromagnetic Transient Simulation Model of MMC-BESS for Various Operating Conditions

作者 Shunliang Wang · Minghao Huang · Hao Tu · Rui Zhang · Junpeng Ma · Guangqiang Peng
期刊 IEEE Transactions on Power Delivery
出版日期 2025年8月
技术分类 储能系统技术
技术标签 储能系统 多电平
相关度评分 ★★★★★ 5.0 / 5.0
关键词 模块化多电平换流器电池储能系统 电磁暂态模型 仿真效率 故障行为 PSCAD/EMTDC
语言:

中文摘要

现有模块化多电平换流器集成电池储能系统(MMC-BESS)的电磁暂态(EMT)仿真模型常存在计算效率低和故障行为模拟不准确的问题。为此,本文提出一种高效的EMT仿真模型。该模型改进了详细等效模型(DEM),考虑了同一桥臂中两个开关同时关断的复杂工况;通过引入辅助PSCAD开关并利用其内置插值算法模拟换流器闭锁状态,结合补充判据公式模拟电池断开过程,并提出加速计算方法以进一步提升仿真效率。在PSCAD/EMTDC环境下,针对HVDC系统进行了稳态、暂态及故障工况的仿真验证,结果表明所提模型具有较高的精度与计算效率。

English Abstract

Existing electromagnetic transient (EMT) simulation models of the modular multilevel converter with an embedded battery energy storage system (MMC-BESS) often suffer from computational inefficiencies and difficulties in accurately simulating fault behaviors. To address these issues, this paper proposes an efficient EMT model for the MMC-BESS. The proposed model improves the detailed equivalent model (DEM) by accounting for the complex scenarios where both switches in the same leg are simultaneously turned off. The converter blocked state is simulated by incorporating auxiliary PSCAD switches and leveraging its built-in interpolation algorithms, while the battery disconnection is simulated by using supplementary decision formulas. Furthermore, a speedup calculation method is introduced to further optimize simulation efficiency. Evaluation of the proposed model is performed in the context of an HVDC system in PSCAD/EMTDC simulation environment, encompassing steady-state operation, transient responses, and faulted operating conditions. The results confirm the simulation accuracy and efficiency of the proposed model.
S

SunView 深度解读

该MMC-BESS电磁暂态仿真模型对阳光电源PowerTitan大型储能系统和ST系列储能变流器的研发具有重要价值。模型通过改进DEM算法和辅助开关插值技术,可精确模拟换流器闭锁、电池断开等复杂故障工况,直接支撑阳光电源多电平储能变流器的拓扑优化设计。高效仿真能力可加速产品在HVDC储能应用场景下的控制策略验证,特别是针对电网故障穿越、黑启动等极端工况的预测性测试。该技术可集成到iSolarCloud平台的数字孪生模块,提升储能系统的智能诊断能力,缩短PowerTitan系统的现场调试周期,降低大规模储能项目的技术风险。