← 返回
系统并网技术
★ 5.0
基于真实同步波形测量数据的逆变型资源次周期动态数据驱动建模
Data-Driven Modeling of Sub-Cycle Dynamics of Inverter-Based Resources Using Real-World Synchro-Waveform Measurements
| 作者 | Hossein Mohsenzadeh-Yazdi · Fatemeh Ahmadi-Gorjayi · Hamed Mohsenian-Rad |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年6月 |
| 技术分类 | 系统并网技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 逆变器资源 数据驱动方法 动态响应建模 长短期记忆网络 波形测量 |
语言:
中文摘要
随着逆变型资源(IBRs)在现代电力系统中的广泛接入,亟需能够准确捕捉其扰动下动态响应的建模方法。本文提出三种基于长短期记忆(LSTM)网络的新型数据驱动方法,用于建模IBRs在次周期扰动下的动态响应。利用加利福尼亚某试验 site 安装的波形测量单元(WMUs)采集的真实电压电流波形数据,构建并验证模型。所提方法在LSTM结构和特征提取方面各有差异,并进一步提出两种策略,通过分析两个IBRs的时序同步波形数据,实现模型在不同IBR间的复用或调整。实验结果表明,即使模型源自不同IBR,仍具有高精度,且优于现有文献中的数据驱动方法。
English Abstract
As inverter-based resources (IBRs) become increasingly integrated into modern power systems, there is a growing need for adept modeling techniques that can accurately capture their dynamic response to disturbances. In this paper, three novel data-driven methods are proposed to model the dynamic response of IBRs during sub-cycle disturbances. We use real-world voltage and current waveform data from waveform measurement units (WMUs) installed at IBRs at a test site in California. The proposed methods are designed based on long short-term memory (LSTM) networks. They vary in terms of the architecture of the LSTM networks and the feature extraction characteristics. Furthermore, two methods are proposed to reuse or adjust a model from one IBR to capture the response of another IBR based on the analysis of time-synchronized waveform measurements at two IBRs. The results demonstrate that despite the model being constructed based on a different IBR, the proposed methods exhibit high accuracy. Experimental results demonstrate and validate the high accuracy of the models and provide a comparison with recent data-driven methods in the literature.
S
SunView 深度解读
该研究对阳光电源的SG系列光伏逆变器和ST系列储能变流器的动态响应建模具有重要应用价值。通过LSTM网络对IBR次周期动态特性的精确建模,可以优化我司产品的GFL/GFM控制策略,提升大规模新能源并网场景下的系统稳定性。研究中提出的模型复用方法,可用于快速开发不同容量等级产品的控制参数,显著提升产品研发效率。建议在iSolarCloud平台集成该建模方法,实现对IBR动态特性的在线监测和预测性维护,为客户提供更优质的智能运维服务。