← 返回
储能系统技术 储能系统 故障诊断 ★ 5.0

Yolov7-DROT:基于旋转机制的变电站隔离开关红外目标故障检测

Yolov7-DROT: Rotation Mechanism Based Infrared Object Fault Detection for Substation Isolator

作者 Haokun Lin · Jiajun Liu · Na Zhi
期刊 IEEE Transactions on Power Delivery
出版日期 2024年10月
技术分类 储能系统技术
技术标签 储能系统 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 隔离器故障检测 红外目标检测 Yolov7 - DROT 可变形卷积 全局 - 局部检测策略
语言:

中文摘要

隔离开关的故障检测对电力系统安全至关重要。现有目标检测算法大多仅实现红外图像中的目标识别,难以准确判别设备故障,且易受复杂背景和隔离开关大长宽比结构干扰。为此,提出一种融合旋转机制的红外目标检测方法Yolov7-DROT。通过在预测部分引入旋转机制,有效抑制背景干扰,提升预测框质量;结合可变形卷积增强对大长宽比结构的特征提取能力;并提出全局-局部分布式的故障检测策略,利用全局检测结果引导局部模型学习故障特征。实验表明,该方法在目标检测中对隔离开关与刀闸的平均检测精度达96.28%,热故障识别准确率达96%。

English Abstract

Fault detection of isolators plays a significant role for the safety of power systems. The majority of existing object detection algorithms only achieve the object discrimination of infrared images, without being able to identify failure of the object. Furthermore, the interference of complex backgrounds and the large aspect ratio structure of the isolators pose challenges to the detection model. To address the above issues, an infrared object detection method incorporating rotation mechanism, called Yolov7-DROT, is proposed. By fusing the rotation mechanism with the prediction part, the interference of the complex background is greatly reduced and the quality of the prediction box is improved. A deformable convolution is introduced for the structure of isolators with large aspect ratios, which strengthens the feature extraction capability of the model for isolators and improves the detection accuracy. Additionally, a global-local distribution detection strategy for isolator faults is proposed, where the global detection results are fed into a local detection model to learn the fault features of isolators. Experimental results show that the proposed method accurately identifies isolators and knife switches in object detection, achieving an average detection accuracy of 96.28%. For thermal fault recognition in knife switches, the fault identification rate reaches 96%.
S

SunView 深度解读

该红外故障检测技术对阳光电源储能及光伏系统的智能运维具有重要应用价值。在PowerTitan大型储能系统和光伏电站中,隔离开关作为关键一次设备,其热故障直接影响系统安全。Yolov7-DROT的旋转机制和可变形卷积可有效应对变电站复杂场景,96%的故障识别准确率可集成至iSolarCloud平台,实现预测性维护。该方法的全局-局部检测策略可启发阳光电源在ST储能变流器、SG逆变器等设备的热管理监测中,通过红外成像技术实现功率器件、母排连接等关键部位的智能诊断,提升系统可靠性,降低运维成本,符合大型储能电站无人值守的发展趋势。