← 返回
储能系统技术
★ 5.0
定制氧化钴纳米结构以实现高光吸收和热化学储能性能
Tailoring cobalt oxide nanostructures for high light absorption and thermochemical energy storage performance
语言:
中文摘要
摘要 热化学储能因其在聚光太阳能系统中具有高能量密度和高效率,成为可持续储能领域极具前景的解决方案。氧化钴由于具备较高的储能容量和优异的循环稳定性,在热化学储能应用中尤为引人关注。然而,其性能受限于氧化还原过程中的热滞后现象以及还原与氧化反应之间显著的温度差。为应对这些挑战,本研究探讨了铜、锰和铁掺杂对氧化钴光吸收性能及储能特性的调控作用。采用溶胶-凝胶法制备了掺杂样品,并通过X射线衍射、扫描电子显微镜、傅里叶变换红外光谱、热重分析与差示扫描量热法以及紫外-可见光谱等手段对其进行了全面表征。系统分析了氧储存容量、储能密度和氧化还原热滞后等关键性能指标。在所测试的材料中,当铜掺杂量x = 0.5时效果最为显著,使热滞后由37 ℃降低至28 ℃,同时太阳光吸收率提升了78%。这些性能提升归因于氧空位浓度的增加以及阳离子价态的改变,从而促进了氧化还原动力学过程并提高了光捕获效率。此外,铜掺杂氧化钴在连续20次氧化还原循环中表现出优异的循环稳定性,凸显其在高效热化学储能应用中的巨大潜力。本研究为先进热化学储能材料的设计与优化提供了有价值的理论依据,有助于推动下一代可再生能源储能技术的发展。
English Abstract
Abstract Thermochemical energy storage offers high energy density and efficiency for concentrated solar power systems, making it a promising solution for sustainable energy storage. Cobalt oxide is particularly attractive for thermochemical energy storage due to its high energy storage capacity and excellent cycling stability. However, its performance is limited by redox thermal hysteresis and a significant temperature gap between reduction and oxidation processes. To address these challenges, this study investigates the effect of copper, manganese, and iron doping on cobalt oxide to enhance its solar light absorption and energy storage properties. The doped compounds were synthesized using the sol–gel method and thoroughly characterized using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and differential scanning calorimetry, and ultraviolet–visible spectroscopy. Key performance metrics, including oxygen storage capacity, energy storage density, and redox thermal hysteresis, were systematically analyzed. Among the tested materials, copper doping at x = 0.5 was most effective, reducing thermal hysteresis from 37 ℃ to 28 ℃ and enhancing solar absorption by 78 %. These improvements are attributed to increased oxygen vacancies and modified cation valence states, which enhance redox kinetics and light-harvesting efficiency. Additionally, the copper-doped cobalt oxide demonstrated excellent cycling stability over 20 redox cycles, highlighting its potential for high-efficiency thermochemical energy storage applications. This study provides valuable insights into the design and optimization of advanced thermochemical energy storage materials, contributing to the development of next-generation renewable energy storage technologies.
S
SunView 深度解读
该热化学储能技术为阳光电源PowerTitan及ST系列储能系统提供了新型材料方向。铜掺杂钴氧化物的高能量密度(78%光吸收提升)和优异循环稳定性(20次循环),可启发我司开发高温储能模块,与现有电化学储能形成互补。其降低氧化还原热滞后的特性,对提升储能系统热管理效率具有参考价值,可应用于光热-光伏-储能一体化解决方案,增强iSolarCloud平台的多能源协同优化能力。