← 返回
光伏发电技术
★ 5.0
一种嵌入式时空混合模型:融合多图结构与注意力驱动融合机制的单站与多站光伏功率预测
An embedded spatiotemporal hybrid model integrating multi-graphs and attention-driven fusion for single- and multi-site photovoltaic power forecasting
| 作者 | Yuxiang Gaoa · Lu Liang · Tiecheng Sua · Mingzhang Pana |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 336 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The study enables both accurate single-site and simultaneous multi-site prediction. |
语言:
中文摘要
单站光伏功率预测支持局部电站管理,而多站预测则有助于区域电网优化。然而,现有大多数模型仅专注于单站预测,针对同时进行多站预测的研究较为有限。更少有研究能够既利用邻近电站的信息以提升单站预测精度,又考虑多站之间的全局时空耦合关系以实现多站预测。为填补这一空白,本研究提出了一种新颖的时空混合模型,通过融合多图结构与注意力驱动的特征融合机制,实现单站与多站光伏功率的同步预测。该模型将切比雪夫图卷积嵌入双向长短期记忆网络中,以实现时空特征的有效提取。利用多图结构,模型融合多源异构数据,提取具有更高粒度的多视角特征。注意力机制则动态优化并整合这些特征,突出最关键的信息。此外,一种改进的蜣螂优化算法通过混沌初始化、搜索范围归一化、自适应因子和随机扰动等创新策略,增强了超参数调优能力,确保了模型的鲁棒性能。基于澳大利亚DKASC八个电站数据集的实验验证表明,该模型具有优异的预测效果。在单站预测任务中,模型 consistently 优于基准模型;在多站预测中达到了当前最优水平,R²达到0.99457,MSE、MAE和RMSE分别为0.01340、0.04626和0.11576。研究结果凸显了该模型在可再生能源功率预测及高效多尺度电网管理中的应用潜力。
English Abstract
Abstract Single-site photovoltaic power prediction supports localized station management, while multi-site prediction facilitates regional grid optimization. However, most existing models focus solely on single-site prediction, with limited research addressing simultaneous multi-site forecasting. Even rarer research can both leverage information from neighboring stations for accurate single-site prediction and consider global spatiotemporal coupling for multi-site prediction. To bridge this gap, this study introduces a novel spatiotemporal hybrid model that integrates multi-graphs and attention-driven feature fusion to achieve both tasks. The model embeds Chebyshev graph convolution into bidirectional Long Short-Term Memory networks for spatiotemporal feature extraction. Using multi-graph structures, it combines multi-source heterogeneous data to extract multi-view features with enhanced granularity . Attention mechanisms dynamically refine and integrate these features, emphasizing the most critical information. Additionally, an improved dung beetle optimizer enhances hyper-parameter tuning through innovations such as chaotic initialization, search range normalization, adaptive factors, and random perturbations, ensuring robust performance. Experimental validation using datasets from eight DKASC stations in Australia demonstrated the model’s effectiveness. It consistently outperformed benchmark models in single-site prediction and achieved state-of-the-art results in multi-site forecasting, with an R2 of 0.99457 and MSE , MAE , and RMSE values of 0.01340, 0.04626, and 0.11576, respectively. These findings highlight the model’s potential for renewable energy forecasting and efficient multi-scale grid management.
S
SunView 深度解读
该时空混合预测模型对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过多站点协同预测可优化SG系列逆变器集群的功率调度策略,提升区域电网友好性;单站点精准预测可增强ST系列储能变流器的充放电决策能力,实现削峰填谷优化。多图卷积与注意力机制的特征融合思路可借鉴至PowerTitan储能系统的多源数据分析,提升预测性维护精度。该模型R²达0.99457的高精度表现,为光储协同控制和虚拟电厂调度提供可靠数据支撑,助力构建新型电力系统。