← 返回
量化气电系统故障传播速度:一种半隐式仿真方法
Quantify Gas-to-Power Fault Propagation Speed: A Semi-Implicit Simulation Approach
| 作者 | Ruizhi Yu · Suhan Zhang · Yong Sun · Wei Gu · Shuai Lu · Baoju Li |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 天然气故障 跨系统传播速度 仿真方法 故障定位策略 级联故障 |
语言:
中文摘要
现代清洁能源电力系统高度依赖天然气的安全供应,易受管道破裂与泄漏故障引发的气体扰动影响。本文首次基于仿真研究此类故障在气-电耦合系统中的跨系统传播速度。建立了故障的微分代数方程模型,结合特征线法确定故障处边界条件;采用基于刚性精确Rosenbrock格式的半隐式方法进行故障后仿真,兼具隐式稳定性与显式计算效率;并提出基于连续Runge-Kutta法的关键时刻定位策略以精确捕捉动态事件。案例验证了该方法在精度与效率上的优势,揭示了故障位置与管道摩擦对传播速度的影响,以及气-电双向耦合可能引发的连锁故障风险。
English Abstract
Relying heavily on the secure supply of natural gas, the modern clean electric power systems are prone to the gas disturbances induced by the inherent rupture and leakage faults. For the first time, this paper studies the crosssystem propagation speed of these faults using a simulationbased approach. Firstly, we establish the differential algebraic equation models of the rupture and leakage faults respectively. The boundary conditions at the fault locations are derived using the method of characteristics. Secondly, we propose utilizing a semi-implicit approach to perform post-fault simulations. The approach, based on the stiffly-accurate Rosenbrock scheme, possesses the implicit numerical stability and explicit computation burdens. Therefore, the high-dimensional and multi-time-scale stiff models can be solved in an efficient and robust way. Thirdly, to accurately locate the simulation events, which cannot be predicted a priori, we propose a critical-time-location strategy based on the continuous Runge-Kutta approach. In case studies, we verified the accuracy and the efficiency superiority of the proposed simulation approach. The impacts of gas faults on gas and power dynamics were investigated by simulation, where the critical events were identified accurately. We found that the fault propagation speed mainly depends on the fault position and is influenced by the pipe frictions. The bi-directional coupling between gas and power may lead to cascading failures.
S
SunView 深度解读
该气-电故障传播速度量化技术对阳光电源PowerTitan大型储能系统与微电网解决方案具有重要应用价值。在燃气-光伏-储能混合能源系统中,ST系列储能变流器需应对燃气机组故障引发的快速功率波动。研究提出的半隐式仿真方法可集成至iSolarCloud智能运维平台,实现毫秒级故障传播预测,为储能系统GFM构网控制提供前馈补偿信号,提升电网支撑能力。特别是在工商业微网场景,该技术可优化储能系统的故障穿越策略,通过预判气源扰动触发储能快速响应,避免连锁停电。建议将跨系统动态耦合模型纳入阳光电源EMS能量管理系统,增强多能互补系统的韧性与可靠性。