← 返回
光伏发电技术
★ 4.0
基于填充床反应器放热特性的热化学太阳能发电系统性能优化与熵-TOPSIS评价
Performance optimization and entropy-TOPSIS evaluation of a thermochemical solar thermal power generation system based on packed bed reactor exothermic characteristics
语言:
中文摘要
摘要 太阳能热发电技术在全球低碳能源转型中具有巨大潜力,但其大规模发展仍受到太阳辐射间歇性、系统稳定性等挑战的制约。本研究聚焦于硅藻土改性的钙基材料,揭示了硅藻土改性使放热反应机理由A3模型转变为D2模型,显著降低了8.69%的活化能,并使指前因子提高了18.19%。对填充床反应器中的放热过程进行了深入研究,阐明了温度场、反应程度及压力场的演化规律。提出了一种引入中间进气通道的创新设计,使反应时间缩短了28.57%。构建了一种新型热化学太阳能热发电(TSTPG)系统,从反应器释热特性的角度系统考察其性能表现。通过综合的4E(能量、㶲、经济与环境)分析框架,系统研究了反应器参数优化对提升系统能量效率、降低㶲损失、减少二氧化碳排放以及提高经济效益的作用机制。提出了一种基于熵权-TOPSIS(逼近理想解排序法)的多维评价方法,将发电能力、能量效率、㶲效率、年总成本和碳减排量纳入统一评估体系。结果表明,在650 K等最优工况下,新构建的系统实现了56.86%的能量效率和49.06%的㶲效率,发电量达48.31 MWh,年总成本为411万美元/年,展现出良好的工程应用前景。
English Abstract
Abstract Solar thermal power generation technology has enormous potential in global low-carbon energy transition, but its large-scale development is still constrained by some challenges such as solar intermittency and system stability. This study focuses on diatomite-modified calcium-based materials, revealing that diatomite modification transforms the exothermic reaction mechanism from an A3 model to a D2 model, which significantly reduces activation energy by 8.69 % and increases the pre-exponential factor by 18.19 %. The exothermic process in packed bed reactors was thoroughly investigated, illustrating the evolution patterns of temperature field, reaction extent, and pressure field. An innovative design of incorporating intermediate air pathways was proposed, and it reduced the reaction time by 28.57 %. A novel thermochemical solar thermal power generation (TSTPG) system was established to systematically examine its performance from the perspective of reactor heat release characteristics. Through a comprehensive 4E (energy, exergy, economy, and environment) analysis framework, the mechanism of reactor parameter optimization on system energy efficiency improvement, exergy loss reduction, CO 2 emission reduction, and economic benefits was systematically investigated. A multi-dimensional evaluation methodology based on entropy-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) was proposed to incorporate the power generation capacity, energy efficiency, exergy efficiency , annual total cost, and carbon emission reduction. Results demonstrate that the newly established system achieved impressive energy and exergy efficiencies of 56.86 % and 49.06 % respectively under optimal conditions such as 650 K, along with power generation of 48.31 MWh and a total annual cost of 4.11 m$/year, showing promising prospects for engineering applications.
S
SunView 深度解读
该热化学储能技术为阳光电源ST系列储能系统提供了长时储能技术路径参考。研究中的填充床反应器放热特性优化、中间气流通道设计缩短反应时间28.57%的创新思路,可启发PowerTitan储能系统的热管理优化。4E综合评估方法(能量、火用、经济、环境)与阳光电源iSolarCloud平台的多维度系统评估理念高度契合,可用于提升储能电站全生命周期经济性分析能力。该系统56.86%能量效率和49.06%火用效率的优化方法,对改进大规模储能系统能效管理具有借鉴意义,支持阳光电源在光储一体化解决方案中实现更低碳排放和更优经济性。