← 返回
控制与算法
★ 4.0
固体氧化物电解池动态运行下热中性目标的多目标优化:一种混合建模方法
Multi-objective optimization of SOEC performance in dynamic operation: a hybrid modelling approach towards thermal neutrality
| 作者 | Haitao Zhu · Jing Zhu · Peiwang Zhu · Jin Xuan · Meng Ni · Haoran Xu |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 337 卷 |
| 技术分类 | 控制与算法 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A hybrid modelling approach is proposed for single cell thermal management. |
语言:
中文摘要
摘要 间歇性可再生能源可能导致固体氧化物电解池(SOECs)内部产生热振荡,从而影响其结构完整性和运行安全。本文构建了一个管状SOEC的数值模型。在准阶跃电压响应条件下,观察到单电池模型可在0.5秒内快速从一个稳态过渡至另一个准稳态,同时保持产热稳定,表明稳态数据可用于预测动态状态下的性能表现。本文提出一种融合了经实验数据验证的多物理场仿真模型、深度神经网络与遗传算法的混合建模方法,用于评估SOEC在稳定热工况下的性能表现,尤其适用于接入波动性可再生能源输入的情形。在维持热中性的前提下,比较了四种控制策略:无控制、燃料比例控制、燃料流量控制以及燃料比例与流量联合控制。其中,联合控制策略在波动工况下调节运行参数方面展现出更优的灵活性。然而,严格维持热中性会引入过大的安全裕度,导致性能下降。因此,采用多目标优化方法探索偏离热中性程度较小的运行场景。结果表明,在热中性条件下,共电解总转化率最高达到77.7%;而轻微吸热条件下,总电解效率提升至83.9%,且单位合成气(CO与H2的混合物)生产的平均直接原料与能源成本降低至0.31美元/千克,在单电池层面实现了更优的整体性能。
English Abstract
Abstract Intermittent renewable power sources can induce thermal oscillations in solid oxide electrolysis cells (SOECs), compromising their integrity and safety. A tubular SOEC numerical model has been constructed. Under the condition of a quasi-step voltage response, it can be observed that the single-cell model can rapidly transition from one steady state to another quasi-steady state within 0.5 s while maintaining stable heat generation, indicating that the steady-state data can be used to predict the dynamic-state performance. A hybrid modelling approach that integrates a multi-physics simulation model verified by experimental data, deep neural networks, and genetic algorithms is presented to assess cell performance under stable thermal conditions, especially when interfaced with variable renewable energy inputs. Four control strategies are compared when maintaining thermal neutrality: uncontrolled, fuel ratio control, fuel flow control, and combined fuel ratio and flow control. Among these, the combined strategy demonstrates superior flexibility in adjusting operational parameters under fluctuating conditions. However, maintaining strict thermal neutrality introduces an excessive safety margin, leading to performance degradation. Therefore, multi-objective optimization is employed to explore scenarios with minor deviations from thermal neutrality. Results show that at thermal neutrality, the total co-electrolysis conversion rate peaks at 77.7 %, while slight heat absorption increases total electrolysis efficiency to 83.9 % and reduces average direct feedstock and energy cost to produce syngas (the mixture of CO and H 2 ) to $0.31/kg in a single cell.
S
SunView 深度解读
该SOEC动态运行多目标优化技术对阳光电源储能系统具有重要借鉴价值。文中针对间歇性可再生能源引起的热振荡问题,提出的混合建模方法(多物理场仿真+深度神经网络+遗传算法)可应用于ST系列PCS和PowerTitan储能系统的热管理优化。特别是其四种控制策略对比和准稳态快速响应(0.5s)的研究思路,可启发阳光电源在GFM/GFL控制算法中集成多目标优化,平衡储能系统的功率响应速度与热安全性,提升iSolarCloud平台的预测性维护能力,降低极端工况下的设备退化风险。