← 返回
光伏发电技术
★ 5.0
光伏电站无人机红外检测中的数据质量分析
Data Quality Analyses for Automatic Aerial Thermography Inspection of PV Power Plants
| 作者 | Victoria Lofstad-Lie · Aleksander Simonsen · Tønnes Frostad Nygaard · Erik Stensrud Marstein |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年7月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏电站 无人机巡检 故障检测 成像距离 机器学习模型 |
语言:
中文摘要
随着光伏电站装机容量持续呈近乎指数级增长,具有成本效益的运维策略变得愈发关键。航空红外热成像技术已实现对公用事业规模光伏电站的快速且可靠的故障检测。在本文中,我们探讨了提高巡检效率的两种关键方法:增加飞行高度和部署无人机群。更大的成像距离可扩大视野,但会降低故障检测能力和地理配准精度。在这项工作中,我们研究了自动故障检测与定位在巡检效率和数据质量之间的权衡。我们训练了YOLO11机器学习模型来检测热图像中的缺陷,并评估了其在不同成像距离和相机俯仰角下的性能。在约80米的距离内,故障检测仍能保持可靠,但地理配准误差成为主要限制因素。最后,我们对一座光伏电站进行了基于无人机群的巡检,集成了自动故障检测与定位功能,并将结果与真实数据进行了对比。
English Abstract
As the installed capacity of photovoltaic power plants continues its near exponential growth, cost-efficient operation and maintenance strategies become increasingly crucial. Aerial infrared thermography has enabled fast and robust fault detection in utility-scale PV plants. In this article, we explore two key approaches to improve inspection efficiency: increase the flight altitude and deploy swarms of unmanned aerial vehicles. A larger imaging distance expands the field of view but reduces fault detectability and georeferencing accuracy. In this work, we study the tradeoff between inspection efficiency and data quality for automatic fault detection and localization. The YOLO11 machine learning model was trained to detect defects in thermal images, and its performance was evaluated to vary imaging distances and camera pitch angles. Fault detection remained robust up to approximately 80 m, but georeferencing error became the primary limiting factor. Finally, we conduct a UAV swarm-based inspection of a PV plant, integrating automatic fault detection and localization, and compare the results with ground truth data.
S
SunView 深度解读
该无人机红外检测数据质量分析技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。研究提出的数据质量评估框架可直接集成到阳光电源大型地面电站的智能诊断系统中,提升SG系列逆变器组串级故障识别准确率。通过标准化的红外图像质量控制,可优化PowerTitan储能系统的热管理监测流程,实现组件热斑、接线盒异常等缺陷的自动化识别。该技术与阳光电源现有的预测性维护算法结合,能显著降低电站运维成本,提高发电效率,特别适用于百兆瓦级光伏电站的规模化巡检需求,为构建全生命周期智能运维体系提供技术支撑。