← 返回
光伏发电技术 ★ 5.0

利用LGB模型和合成特征增强光伏功率预测

Enhancing Photovoltaic Power Forecasting Using the LGB Model and Synthetic Features

作者 Costanza Luppi · Francesco Lo Franco · Vincenzo Cirimele · Mattia Ricco · Valerio Apicella
期刊 IEEE Journal of Photovoltaics
出版日期 2025年4月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏发电 功率预测 气象数据 合成特征 预测性能
语言:

中文摘要

在过去十年里,对可持续能源不断增长的需求使得人们对光伏发电产生了浓厚兴趣。由于光伏发电具有间歇性,准确的光伏功率预测对于光伏系统的高效管理和监测至关重要。在这种情况下,气象数据的准确性至关重要。然而,并不总是能够在当地获取此类数据,而且通常像辐照度这样的一些信息是从其特性未被详细了解的模型中获取的。为克服这一局限性,本研究评估了五种合成特征,这些特征结合了晴空全球水平辐照度和云量数据,用于在没有直接测量数据的情况下估算总辐照度。使用轻梯度提升模型来评估采用这些合成特征的模型的预测性能,并与基于包括辐照度在内的传统气象输入的模型进行对比。在一个参考周内进行评估的结果显示,标记为 <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><inline-formula><tex-math notation="LaTeX">$\chi _{5}$</tex-math></inline-formula></b> 的特征略微提高了模型的准确性(均方根误差从 84.013 瓦/千瓦峰值降至 87.232 瓦/千瓦峰值,<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> 从 0.888 提升至 0.875)。这些结果表明,合成特征能够取得相当的效果,并且在某些情况下甚至可以提高预测性能。

English Abstract

Over the past decade, the growing demand for sustainable energy has led to significant interest in photovoltaic (PV) power generation. Due to its intermittent nature, accurate PV power forecasting is essential for the efficient management and monitoring of PV systems. In this context, the accuracy of meteorological data is critical. However, it is not always possible to obtain such data on a local basis, and often some information, such as irradiance, is obtained from models whose characteristics are not known in detail. To overcome this limitation, this study evaluates five synthetic features that combine clear-sky global horizontal irradiance and cloudiness data to estimate total irradiance in the absence of direct measurements. A light gradient boosting model is used to evaluate the predictive performance of a model using these synthetic features compared to a model based on conventional meteorological inputs, including irradiance. The results, evaluated over a reference week, show that the feature labeled _5 slightly improves model accuracy (passing from an RMSE of 84.013 to 87.232 W/kWp and R^2 from 0.888 to 0.875). These results show that synthetic features can achieve comparable results and in some cases even improve prediction performance.
S

SunView 深度解读

该LGB模型结合合成特征的光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有直接应用价值。通过时间序列衍生特征和环境变量非线性组合,可显著提升SG系列光伏逆变器的短期功率预测精度,优化MPPT算法的前瞻性控制。在PowerTitan储能系统中,精准的光伏出力预测能改进充放电策略制定,提高储能系统的经济性和电网友好性。该方法的轻量化特性适合嵌入式部署,可集成到逆变器本地控制器中实现边缘智能预测,减少云端通信延迟,为构网型GFM控制提供更可靠的功率预测输入,提升新能源电站的调度响应能力。