← 返回
光伏发电技术 ★ 5.0

用于光伏电池缺陷检测中数据不平衡的缺陷电致发光图像生成

Defective Electroluminescence Image Generation for Data Imbalance in Solar Cell Defect Inspection

作者 Ziai Zhou · Jiacheng Jiang · Jinxia Zhang
期刊 IEEE Journal of Photovoltaics
出版日期 2025年9月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏组件 缺陷EL图像生成 图像类型分类 数据增强 缺陷模板
语言:

中文摘要

利用高分辨率电致发光(EL)图像对光伏组件进行缺陷检测已广受欢迎。然而,针对光伏组件EL图像中的不平衡问题(即缺陷图像数量远少于正常图像数量)开展的研究有限。为解决上述问题,本文提出一种快速生成缺陷EL图像的方法。为准确提取缺陷区域,需要找出与缺陷图像最相似的正常图像。首先,提出一种图像类型分类网络,用于识别与缺陷图像类型(单晶硅或多晶硅)相同的正常图像。然后,进一步利用余弦相似度来找出与缺陷图像最相似的正常图像。之后,通过将缺陷图像与所找出的相似正常图像进行对比,获取缺陷模板。为快速生成多样且丰富的缺陷EL图像,采用了有效的EL图像数据增强方法并应用于缺陷模板。具体而言,首先引入小角度旋转和高斯模糊对EL图像进行增强。最后,将增强后的缺陷模板与任意不同的正常图像进行融合,生成大量新的缺陷图像。将所提出的缺陷图像生成方法与常用于解决数据不平衡问题的过采样和数据增强方法进行实验对比,结果表明,所提方法能够提供更丰富的信息,从而大幅优于其他方法。

English Abstract

The utilization of high-resolution electroluminescence (EL) images for defect inspection in photovoltaic modules has gained significant popularity. However, there are limited works on the imbalance problem in the EL images of the photovoltaic modules, specifically that the number of defective images is substantially less than the number of normal images. To address the above problem, a fast defective EL image generation method is proposed in this article. To accurately extract the defective region, a normal image, which is the most similar to the defective image, needs to be identified. First, an image type classification network is proposed to recognize the normal images with the same type (monocrystalline or polycrystalline) as the defective image. Then, the cosine similarity is further employed to identify the normal image that is most similar to the defective image. After that, the defective template is acquired by comparing the defective image with the identified similar normal image. To quickly generate diverse and rich defective EL images, effective data augmentation methods for EL images are exploited and applied to the defective template. Specifically, small-scale rotation and Gaussian blurring are first introduced to augment the EL images. Finally, the augmented defective templates are merged with any different normal images to produce a large amount of new defective images. The experimental comparison of the proposed defective image generation method with oversampling and data augmentation, which are commonly used for data imbalance, demonstrates that our proposed method can provide richer information and thus outperform other methods with a big gap.
S

SunView 深度解读

该缺陷EL图像生成技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。在光伏电站运维中,稀有缺陷样本(如隐裂、热斑等)难以大量获取,制约了AI诊断模型的训练效果。该GAN生成方法可为SG系列逆变器配套的组件健康监测系统提供数据增强方案,通过合成稀有缺陷样本平衡训练集,显著提升小样本条件下的缺陷识别精度。可直接应用于PowerTitan大型储能系统的电池单体缺陷检测,以及光伏电站智能巡检中的组件异常识别,增强预测性维护能力,降低误检率,提升阳光电源全生命周期运维服务的智能化水平。