← 返回
光伏发电技术
★ 5.0
由湿热高压电势老化引起的光伏电池减反射涂层退化的诊断
Diagnosis of PV Cell Antireflective Coating Degradation Resulting From Hot-Humid High-Voltage Potential Aging
| 作者 | David C. Miller · Rachael L. Arnold · Peter L. Hacke · Steven C. Hayden · Aubrey Jackson · Steve Johnston |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年4月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏电池 减反射涂层腐蚀 阶梯应力测试 表征 微观分析 |
语言:
中文摘要
此前,在采用湿热测试条件并施加外部高压(HV)偏置的研究中,已观察到光伏电池减反射涂层的腐蚀现象(“$\text{AR}_\text{c}$ 腐蚀”)。本研究主要聚焦于已知易受影响的传统铝背表面场电池组成的微型组件(MiMos),对其进行对比式阶梯应力测试。每种电池类型的 MiMos 分别施加 +1500 V、–1500 V 电压或不施加偏置(“$V_\text{oc}$”),并按照国际电工委员会技术规范 62804 - 1 的要求,依次在 60 °C/60%相对湿度(RH)条件下测试 96 小时、70 °C/70% RH 条件下测试 200 小时以及 85 °C/85% RH 条件下测试 200 小时。每个测试步骤的表征方法包括肉眼观察、相机拍摄、电致发光(EL)成像、比色法以及电流 - 电压曲线跟踪。最终表征方法包括:阳光 - $V_\text{oc}$ 测试、外量子效率空间映射、高分辨率光致发光测试、EL 成像以及暗锁相热成像。对提取的芯样进行了失效分析,分析方法包括配备能量色散 X 射线光谱仪(EDS)的扫描电子显微镜(SEM)、X 射线光电子能谱以及扫描俄歇显微镜(SAM)。还对之前研究中经历过阶梯式高压老化的 MiMos 以及单独在户外老化的全尺寸组件进行了失效分析。$\text{AR}_\text{c}$ 腐蚀现象在施加 +1500 V(HV +)应力的 MiMos 和组件的玻璃/封装材料/电池一侧尤为明显。与玻璃腐蚀、栅线腐蚀和分层以及其他并发的降解模式相比,外观、颜色和反射率是最具区分性的特征。SEM/EDS 和 SAM 分析确定了氮化硅转化为水合二氧化硅、含水二氧化硅或水合无定形二氧化硅的过程,这种转化优先发生在金字塔纹理电池表面的边缘和尖端。
English Abstract
Corrosion of the antireflective coating on a photovoltaic cell (“ AR_c corrosion”) has previously been observed in studies using hot-humid test conditions with external high-voltage (HV) bias. This study primarily focuses on known vulnerable legacy aluminum back surface field cells in mini-modules (MiMos) put through comparative stepped stress tests. Each cell type had MiMos at +1500 V, –1500 V, or unbiased (“ V_oc ”) potential, which were sequentially subjected to test conditions of 60 °C/60% relative humidity (RH) for 96 h, as in International Electrotechnical Commission Technical Specification 62804-1; 70 °C/70% RH for 200 h; and 85 °C/85% RH for 200 h. Characterizations at each step included visual camera and electroluminescence (EL) imaging, colorimetry, and current–voltage curve tracing. Final characterizations included: Suns– V_oc , spatial mapping of external quantum efficiency, high-resolution photoluminescence, EL, and dark lock-in thermography imaging. Forensics were performed on extracted cores, including scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy, and scanning Auger microscopy (SAM). Forensics were also conducted on MiMos from previous studies that underwent stepped HV aging and separate outdoor aged full-sized modules. AR_c corrosion was specifically seen for the glass/encapsulant/cell side of the +1500 V (HV+) stressed MiMos and modules. Appearance, color, and reflectance were the most distinguishing characteristics relative to glass corrosion, gridline corrosion and delamination, and other concurrent degradation modes. SEM/EDS and SAM identified the conversion of silicon nitride to hydrated silica, hydrous silica, or hydrated amorphous silica, which preferentially occurred at the edges and tips of the pyramidal textured cell surface.
S
SunView 深度解读
该减反射涂层退化诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud智能运维平台具有重要应用价值。研究揭示的湿热高压协同退化机制可指导:1)SG逆变器优化MPPT算法,通过监测组件光学性能衰减特征实现早期故障预警;2)iSolarCloud平台集成电化学阻抗谱诊断模型,建立ARc腐蚀与发电量损失的关联数据库,实现预测性维护;3)针对高温高湿地区(如东南亚市场)的PowerTitan储能系统,优化组件选型标准,规避高压偏置下的涂层失效风险。该技术可提升阳光电源全系统在严苛环境下的长期可靠性与发电效率。