← 返回
光伏发电技术 ★ 5.0

先进的光伏组件表征:利用图像变换器从电致发光图像预测电流-电压曲线

Advanced Photovoltaic Module Characterization: Using Image Transformers for Current–Voltage Curve Prediction From Electroluminescence Images

作者 Brandon K. Byford · Laura E. Boucheron · Bruce H. King · Jennifer L. Braid
期刊 IEEE Journal of Photovoltaics
出版日期 2025年5月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏组件 I–V曲线 电致发光图像 SWin变压器网络 最大功率点
语言:

中文摘要

对太阳能电站的运维而言,单个光伏(PV)组件的健康监测是一项艰巨的任务。可以通过发光检测、热成像以及电流 - 电压($I - V$)曲线分析来检查组件,以识别损伤和功率损耗。$I - V$ 曲线能直接提供电气性能指标,可提供易于解读的数据来判断组件的健康状况。然而,为了获取这些曲线,必须将组件从阵列中断开,要么将其移至太阳模拟器,要么在原位进行表征,并对组件温度、入射太阳光谱和强度进行校正。组件的发光或热图像相对容易在原位获取。电致发光(EL)图像能突出显示组件中的物理缺陷,但无法提供易于解读的特征以与电气性能相关联。本文提出了一种滑动窗口(SWin)变压器网络,用于根据光伏组件对应的 EL 图像预测其 $I - V$ 曲线。预测的 $I - V$ 曲线能够准确预测最大功率点(MPP)、短路电流 $I_{sc}$ 和开路电压 $V_{oc}$,平均误差小于 1%。将从预测曲线中提取的单二极管模型(SDM)参数与从真实曲线中提取的参数进行比较,串联电阻 $R_{s}$ 的平均误差为 5.19%,光电流 $I$ 的平均误差为 0.197%。由于分流电阻 $R_{sh}$ 和暗电流 $I_{o}$ 参数对 $I - V$ 曲线的微小变化较为敏感,因此对它们的预测误差较大。

English Abstract

Individual photovoltaic (PV) module health monitoring can be a daunting task for operation and maintenance of solar farms. Modules can be inspected through luminescence, thermal imaging, and current–voltage (I–V) curve analyzes for identification of damage and power loss. I–V curves provide easily interpretable data to determine module health as they directly provide electrical performance metrics. However, in order to obtain these curves, modules must be disconnected from the array and either removed to a solar simulator or characterized in situ with corrections for module temperature, the incident solar spectrum, and intensity. Luminescence or thermal images of a module are relatively easy to acquire in situ. Electroluminescence (EL) images highlight physical defects in the modules but do not provide easily interpretable features to correlate with electrical performance. This work presents a SWin transformer network to predict I–V curves for PV modules from their corresponding EL images. The predicted I–V curves allow the accurate prediction of the maximum power point (MPP), short-circuit current I_ sc , and open-circuit voltage V_ oc with a mean error less of than 1%. Comparing single diode model (SDM) parameters extracted from the predicted curves to those extracted from the true curves, the series resistance R_ s demonstrates a mean error of 5.19%, and the photocurrent I a mean error of 0.197%. The shunt resistance R_ sh and dark current I_ o parameters are predicted with larger errors because of their sensitivity to small changes in the I–V curve.
S

SunView 深度解读

该EL图像智能诊断技术对阳光电源智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台的预测性维护模块,通过无人机或固定相机采集电站组件EL图像,利用Image Transformer模型实时预测I-V曲线,无需现场IV测试即可评估组件健康状态。该技术可显著提升SG系列逆变器配套的智能诊断效率,特别适用于大型地面电站和分布式光伏的批量检测场景。结合MPPT算法优化,可根据预测的组件性能退化情况动态调整工作点,延缓系统失配损失。建议将该深度学习方法与现有故障诊断算法融合,构建从图像采集到性能预测的全自动化运维闭环,为PowerTitan等大型储能系统的光储协同优化提供精准的组件级性能数据支撑。