← 返回
光伏发电技术 ★ 5.0

研究光伏封装材料在热加速老化下的交联、降解与粘附行为

Investigating the Crosslinking, Degradation, and Adhesion Behavior of Photovoltaic Encapsulants Under Thermal Accelerated Aging

作者 Kuan Liu · David C. Miller · Nick Bosco · Jimmy M. Newkirk · Tomoko Sakamoto · Reinhold H. Dauskardt
期刊 IEEE Journal of Photovoltaics
出版日期 2024年12月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏组件封装材料 可靠性模型 热老化 交联动力学 粘附性能
语言:

中文摘要

光伏(PV)组件封装材料特性的退化会导致机械脆化和分层,这仍是太阳能装置出现故障的一个原因。此前已发表了一个多尺度可靠性模型,该模型将封装材料的机械和断裂特性与降解后的分子结构以及与相邻太阳能电池和玻璃基板的界面结合联系起来。该模型主要是为聚(乙烯 - 醋酸乙烯酯)(EVA)封装材料开发的,仍有待实验验证。确定替代封装材料(如聚烯烃弹性体(POE)和EVA/POE/EVA复合材料(EPE))的降解和交联动力学,可以推广该模型。在这项工作中,我们对完全固化的EVA、POE和EPE封装材料进行加速热老化试验,以确定高温如何影响反应动力学。即使在没有紫外线和交联引发剂的情况下,也观察到在热有氧(90 °C,相对湿度22%)和热厌氧(90 °C,密封在氮气中)老化条件下,封装材料的凝胶含量(交联度)增加,结晶度降低。傅里叶变换红外光谱(FTIR) - 衰减全反射分析表明,封装材料的降解不明显,这证明了紫外线和水分在加速降解过程中的关键作用。对试样级样品(电池/封装材料/玻璃层压板)进行的附着力测试显示,经过5000小时的热干(90 °C,相对湿度约1%)和湿热(90 °C,相对湿度60%)老化后,附着力能量$G_{c}$下降。POE试样表现出最佳的稳定性,其次是EPE,然后是EVA。对于EVA和POE,由于水解降解加剧,湿热老化的试样的$G_{c}$下降幅度更大。热干老化条件表明,即使封装材料在没有紫外线和高湿度的情况下降解不明显,界面的热降解也可能很显著。

English Abstract

Degradation of photovoltaic (PV) module encapsulant characteristics that lead to mechanical embrittlement and delamination remains a cause of failure in solar installations. A multiscale reliability model connecting the encapsulant mechanical and fracture properties to the degraded molecular structure and interfacial bonding to adjacent solar cell and glass substrates was previously published. The model, developed primarily for poly(ethylene-co-vinyl acetate) acetate (EVA) encapsulants, remains to be experimentally validated. Determining the degradation and crosslinking kinetics of alternative encapsulants, such as polyolefin elastomer (POE) and EVA/POE/EVA composites (EPE), can generalize the model. In this work, we subject fully cured EVA, POE, and EPE encapsulants to accelerated thermal aging to determine how high temperatures impact reaction kinetics. An increase in gel content (crosslinking) and decrease in crystallinity of the encapsulants under hot-aerobic (90 °C, 22% RH) and hot-anaerobic (90 °C, sealed in N2 air) aging were observed, even in the absence of UV and crosslinking initiators. Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance analysis showed insignificant encapsulant degradation, demonstrating the critical role of UV and moisture in accelerating degradation. Adhesion testing performed on coupon-level specimens (cell/encapsulant/glass laminates) showed decreases in adhesion energy, Gc, from 5000 h of hot-dry (90 °C, ∼1% RH) and hot-humid (90 °C, 60% RH) aging. POE coupons demonstrated the best stability, followed by EPE then EVA. For EVA and POE, hot-humid aged coupons experienced a larger decrease in Gc due to enhanced hydrolytic degradation. Hot-dry aging condition demonstrated that thermal degradation of the interface could be significant even if the encapsulant experiences negligible degradation in the absence of UV and elevated humidity.
S

SunView 深度解读

该封装材料老化机理研究对阳光电源SG系列光伏逆变器配套组件的长期可靠性评估具有重要价值。EVA交联度与界面粘附性能的衰退规律可直接应用于iSolarCloud智能运维平台的预测性维护算法,通过建立老化模型实现组件失效预警。研究揭示的化学降解机制为PowerTitan大型储能系统中光伏侧组件选型提供理论依据,特别是高温环境下的封装材料筛选标准。红外光谱与剥离强度的关联分析方法可集成到智能诊断系统,通过现场快速检测评估组件剩余寿命,优化电站全生命周期运维策略,降低因封装失效导致的发电损失。