← 返回
光伏发电技术 ★ 5.0

亚小时级分解-转移模型对温带气候的误差分析

Subhourly Error Analysis of Decomposition–Transposition Model Pairs for Temperate Climates

作者 Yazan J. K. Musleh · Willow Herring · Carlos D. Rodríguez-Gallegos · Stuart A. Boden · Tasmiat Rahman
期刊 IEEE Journal of Photovoltaics
出版日期 2024年11月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏系统 光学模型对 平面辐照度预测 误差分析 DISC - SO模型对
语言:

中文摘要

光伏(PV)系统可行性软件利用分解 - 转换模型对来近似计算光伏阵列平面(POA)辐照度。本研究分析了15种光学模型对的准确性,采用分钟级输入辐照度,通过将跟踪系统和55°朝南倾斜系统的POA预测值与实测值进行对比,评估了温带环境下的POA预测情况。以平均绝对误差(MAE)≤5%为基准,研究揭示了不同天空条件下的误差差异。受天气条件和系统类型的影响,模型估算误差范围在2.67%至51.07%之间。对于跟踪系统,评估显示在晴朗条件下,有10种模型对的误差保持在范围内。然而,在部分多云的天空条件下,这一情况有所恶化,只有5种模型的误差在范围内,而在阴天条件下,仅有2种模型符合要求。固定倾斜系统呈现出类似的趋势,但达到要求阈值的模型更少;晴朗条件下有4种,部分多云条件下有2种。只有DISC - SO模型对在阴天条件下达到了阈值,其平均绝对误差为2.67%。因此,DISC - SO成为了水平辐照度转换的首选模型。然而,决定系数(R²)值表明,由于输入数据的时间分辨率高以及基于小时数据的SO转换模型,仍存在一些挑战。此外,该研究还考察了分解模型和转换模型对百分比误差的影响。分解模型的变化对跟踪系统造成的误差最高可达2.43%,对固定倾斜系统造成的误差最高可达5.34%。转换误差更高,分别为8.53%和11.51%。使用小时级数据可将晴朗、部分多云和阴天条件下的误差分别降低至2.35%、1.44%和 - 2.15%。

English Abstract

Feasibility software for photovoltaic (PV) systems leverage decomposition-transposition model pairs to approximate Plane-of-Array (POA) irradiance. This study analyses the accuracy of 15 optical model pairs, using minute input irradiance, to assess POA predictions in a temperate setting by comparing to measured POA for both a tracker and a 55° south-facing tilted system. Using the Mean Absolute error (MAE) of ≤5% as the benchmark, variations were revealed across diverse sky conditions. Model estimates showcased a range of errors, from 2.67% to 51.07%, influenced by condition and system type. For the tracking system, the evaluation showed that in clear conditions, 10 pairs maintained errors within the range. However, this success diminished under intermediate skies, with 5 models remaining within range, and further reduced to 2 models in overcast conditions. The fixed-tilt system demonstrated similar trends but with fewer models meeting the required thresholds; 4 in clear and 2 in intermediate conditions. Only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an MAE of 2.67%. Thus, DISC-SO made it a preferred choice for transposing horizontal irradiance. However, R2 values highlighted challenges due to the high temporal resolution of input data and the hourly data-based SO transposition model. Moreover, the study also examined the impact of decomposition and transposition models on percentage errors. Decomposition changes caused up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. Transposition errors were higher, at 8.53% and 11.51%. Using hourly data reduced errors to 2.35%, 1.44%, and −2.15% in clear, intermediate, and overcast conditions.
S

SunView 深度解读

该亚小时级辐照度预测精度研究对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要价值。精准的POA辐照度模型可提升iSolarCloud平台的发电量预测准确性,特别在温带多云天气下优化MPPT跟踪策略,减少散射辐射条件下的功率损失。研究成果可应用于光伏电站前期可行性评估工具,提高ST储能系统的容量配置精度。针对不同天空条件的模型误差特征,可改进智能运维系统的实时功率预测算法,为电网调度提供更可靠的亚小时级发电曲线,增强构网型GFM控制在弱光照条件下的稳定性。