← 返回
风电变流技术
★ 5.0
基于梯度提升决策树的高风电渗透率HVDC送端系统连锁故障筛查
Cascading Failure Screening Based on Gradient Boosting Decision Tree for HVDC Sending-End Systems With High Wind Power Penetration
| 作者 | Tianhao Liu · Jiongcheng Yan · Yutian Liu · Chi Yung Chung |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年1月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 高压直流输电 风力发电机 连锁故障 在线筛选方法 梯度提升决策树 |
语言:
中文摘要
在基于电网换相换流器的高压直流输电(LCC - HVDC)送端交流系统中,与风力发电机组(WT)动态响应相关联的连锁故障可能导致高压直流输电换相失败。由此产生的暂态电压扰动会导致送端系统中的风力发电机组跳闸。涉及风力发电机组与高压直流输电相互作用的连锁故障会显著限制高压直流输电系统输送的风电功率。本文针对含大规模风力发电机组的高压直流输电送端系统,提出了一种基于梯度提升决策树(GBDT)的在线连锁故障筛选方法。首先,考虑典型的连锁故障传播模式,提出了一种基于置信水平的风力发电机组跳闸模型,用于连锁故障风险评估。然后,采用对比剪枝技术改进蒙特卡罗树搜索算法,离线生成均匀分布的连锁故障样本。利用改进的支持向量机快速识别动态不安全场景。最后,利用梯度提升决策树,通过运行特征预测后续高风险故障,实现连锁故障的在线筛选。为提高故障预测精度,针对梯度提升决策树提出了动态加权技术。对改进的新英格兰测试系统和中国西部宁夏省级电网的仿真结果表明,所提方法能够考虑风力发电机组与高压直流输电之间的动态相互作用,快速筛选连锁故障。
English Abstract
In LCC-HVDC sending-end AC systems, cascading failures combined with the dynamic response of wind turbines (WTs) can lead to HVDC commutation failures. The resulting transient voltage disturbances cause WT tripping in sending-end systems. Cascading failures that involve the interaction between WTs and HVDC significantly limit the wind power transmitted by HVDC systems. This paper proposes an online cascading failure screening method based on gradient boosting decision tree (GBDT) for HVDC sending-end systems with large-scale WTs. First, a confidence level-based WT tripping model is proposed for cascading failure risk assessment considering a typical cascading failure propagation pattern. Then, Monte Carlo tree search is improved using a contrastive pruning technique to generate evenly distributed samples of cascading failures offline. Dynamic insecure scenarios are quickly identified using an improved support vector machine. Finally, GBDT is utilized to screen for cascading failures online by predicting subsequent high-risk failures using operating features. A dynamic weighting technique is proposed for GBDT to improve the fault prediction accuracy. Simulation results of a modified New England test system and the Ningxia provincial power grid in western China demonstrate that the proposed method can quickly screen for cascading failures considering the dynamic interaction between WTs and HVDC.
S
SunView 深度解读
该研究的GBDT连锁故障筛查方法对阳光电源的大型储能和风电变流产品具有重要参考价值。特别是对ST系列储能变流器和风电并网系统,可借鉴其故障预警机制优化GFM/GFL控制策略,提升系统在高可再生能源渗透率下的稳定性。该方法可集成到iSolarCloud平台,通过机器学习实现故障路径快速识别和预警,为储能电站和风电场提供更精准的运维保障。建议在PowerTitan等大型储能系统中应用该技术,提升换流器的故障预测能力和系统可靠性。这对构建更稳定的新能源发电及储能系统具有积极意义。