← 返回
光伏发电技术 ★ 5.0

一种集成多源数值天气预报的短期非参数概率光伏功率预测两阶段集成学习框架

A Two-Stage Ensemble Learning Framework for Short-Term Nonparametric Probabilistic Photovoltaic Power Forecasting Integrating Multi-Source Numerical Weather Predictions

语言:

中文摘要

利用数值天气预报(NWP)进行短期太阳能功率概率预测(SSPPF)已被证明是一种提高太阳能整合与利用效率的有效方法。然而,大多数现有的SSPPF研究仅采用单源NWP,忽略了多源NWP在提高概率预测准确性和稳健性方面的潜在优势。本文提出了一种用于SSPPF的改进两阶段集成学习预测框架(ITS - ELFF)。ITS - ELFF将多源NWP作为关键的外部协变量,以生成多步分位数预测。在第一阶段,一组稳健且多样的基学习器提供初始分位数预测。在第二阶段,一个元学习器整合所有基学习器的分位数预测,以生成最终的预测分位数。为了挖掘多源NWP中的有价值信息,我们在ITS - ELFF中引入了跳跃连接,并纳入了特征注意力机制以动态选择关键特征。此外,在元学习器中加入了多头时间注意力机制,以有效捕捉太阳能功率时间序列中隐藏的长期时间依赖关系。提出了一种非交叉分位数生成策略,以确保预测分位数的单调性。最后,为ITS - ELFF开发了一种两阶段训练策略,以避免过拟合。基于公开真实世界数据的数值实验结果验证了所提出的ITS - ELFF在SSPPF中的有效性。

English Abstract

Utilizing numerical weather prediction (NWP) for short-term solar power probabilistic forecasting (SSPPF) has proven to be an effective approach to enhance the integration and utilization of solar energy. However, most existing SSPPF studies only employ single-source NWP, overlooking the potential benefits of multi-source NWPs for improving the accuracy and robustness of probabilistic forecasting. This paper proposes an improved two-stage ensemble learning forecasting framework (ITS-ELFF) for SSPPF. ITS-ELFF utilizes multi-source NWPs as key exogenous covariates to generate multi-step quantile forecasts. In the first stage, a set of robust and diverse base learners provides the initial quantile forecasts. In the second stage, a meta-learner integrates the quantile forecasts from all base learners to generate the final predictive quantiles. To explore the valuable information in multi-source NWPs, we introduce skip connections in the ITS-ELFF and incorporate a feature attention mechanism to dynamically select critical features. Furthermore, a multi-head temporal attention mechanism is incorporated into the meta-learner to effectively capture hidden long-term temporal dependencies within the solar power time series. A non-crossing quantile generation strategy is proposed to ensure the monotonicity of the predictive quantiles. Finally, a two-stage training strategy is developed for ITS-ELFF to avoid overfitting. Numerical results on public real-world data verify the effectiveness of the proposed ITS-ELFF in SSPPF.
S

SunView 深度解读

该两阶段集成学习框架对阳光电源iSolarCloud智能运维平台和SG系列光伏逆变器具有重要应用价值。通过融合多源NWP数据的非参数概率预测,可显著提升光伏电站功率预测精度,优化MPPT算法的前瞻性控制策略。在PowerTitan储能系统中,高精度概率预测能改进充放电调度决策,提升削峰填谷效果和电网稳定性。该方法的概率校准与尖峰覆盖能力可增强iSolarCloud平台的预测性维护功能,为大规模光储电站提供更可靠的发电计划和AGC调频响应能力,降低弃光率并提高并网友好性。