← 返回
风电变流技术 可靠性分析 ★ 5.0

基于软演员-评论家算法与逻辑型Benders分解相结合的风电不确定性下月度安全约束机组组合

Soft Actor-Critic Combined with Logic-Based Benders Decomposition Algorithm for Monthly Security Constrained Unit Commitment under Wind Power Uncertainty

作者 Jianbing Feng · Zhouyang Ren · Wenyuan Li
期刊 IEEE Transactions on Power Systems
出版日期 2025年6月
技术分类 风电变流技术
技术标签 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 月度安全约束机组组合 深度强化学习 LBD - SAC算法 任务分解 测试系统验证
语言:

中文摘要

月度安全约束机组组合(M - SCUC)从长期视角确保了高比例可再生能源渗透下电力系统运行的可靠性和灵活性。本文基于深度强化学习,提出了一种结合基于逻辑的Benders分解(LBD - SAC)的软演员 - 评论家算法,以高效求解M - SCUC问题。该算法无需进行任何紧凑性近似,即可处理M - SCUC模型中的高维、非凸和复杂不确定性问题。在LBD - SAC算法中,开发了一种任务分解和优化辅助的训练机制,以确保运行约束并提高收敛性能。M - SCUC问题被分解为主问题和子问题,主问题带有用于机组组合决策的约束马尔可夫决策过程,子问题为松弛的最优潮流问题。主问题中的约束违反情况和子问题得出的松弛边界被用作智能体在决策空间中的安全探索成本。通过集成加速的原始 - 对偶优化方法来有效最小化这些成本,该算法在满足M - SCUC问题可行域的同时探索最优解。利用修改后的IEEE 118节点、300节点和500节点测试系统验证了所提方法的有效性。

English Abstract

Monthly security constrained unit commitment (M-SCUC) ensures the reliability and flexibility of power system operations under high penetration of renewable energy from a long-term perspective. Based on deep reinforcement learning, this paper proposes a Soft Actor-Critic combined with Logic-based Benders decomposition (LBD-SAC) algorithm to efficiently solve the M-SCUC. It addresses the high-dimensional, non-convex, and complex uncertainties in the M-SCUC model without any compactness approximations. In the LBD-SAC, a task-decomposed and optimization-assisted training mechanism is developed to ensure the operational constraints and to enhance convergence performance. The M-SCUC is decomposed into a master problem with a constrained Markov decision process for commitment decisions, and a subproblem with relaxed optimal power flow. The constraint violations from the master problem and the relaxation bounds derived from the subproblem are used as safe exploration costs for the agent in the decision space. By integrating an accelerated primal-dual optimization approach to efficiently minimize these costs, the algorithm explores the optimal solution while satisfying the feasible region of the M-SCUC problem. The efficacy of the proposed method is validated using the modified IEEE 118-bus, 300-bus and 500-bus test systems.
S

SunView 深度解读

该研究提出的强化学习与Benders分解混合优化方法对阳光电源的储能与光伏产品线具有重要参考价值。具体而言:1) 可应用于ST系列储能变流器的调度优化,提升PowerTitan大型储能系统对风电波动的适应能力;2) 可优化SG系列光伏逆变器的MPPT控制策略,提高系统在复杂天气条件下的发电效率;3) 其机组组合优化思路可用于iSolarCloud平台的智能调度算法,协调多能源互补运行。该方法有助于提升阳光电源产品在大规模新能源接入场景下的经济性与可靠性。