← 返回
光伏发电技术
★ 5.0
优化建筑能源系统的电网交互性、舒适性和韧性
Optimizing building energy systems for grid-interactivity, comfort and resilience
| 作者 | Wanfu Zheng · Ziqi Huab · Dan Wang · Zhe Wang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 340 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Proposes a hierarchical control framework combining MPC and rule-based strategies. |
语言:
中文摘要
摘要 随着太阳能光伏等可再生能源的广泛应用,在确保电网稳定、用户舒适度以及应对停电事件的韧性的同时,管理建筑能源系统的复杂性变得日益具有挑战性。为应对这一挑战,本研究提出了一种分层控制框架,能够在多个住宅建筑中对电池储能系统、热泵和生活热水(DHW)系统进行最优协调。本文采用线性回归、k近邻回归和LightGBM方法构建了针对扰动的预测模型。在建筑层级,提出一种数据驱动的模型预测控制(MPC)策略,对热泵运行进行最优调控以保障居住者舒适度,并辅以基于规则的控制器实现生活热水储热调度。在微网层级,采用基于物理模型的MPC对电池能量进行调度,以实现削峰填谷和减排等电网级目标。两个层级之间的协调通过一种自下而上的结构实现:建筑层级的控制器估算其未来的电力需求,并将其作为扰动输入传递给上层的电池调度优化模块。该框架在2023年NeurIPS CityLearn挑战赛中表现优异,总体排名第二,并在公共建筑的舒适性、排放、电网效率和韧性等多项指标上取得最佳成绩。本研究为社区规模的能源管理提供了有效的解决方案,强调了建筑系统与微网之间多层级协调在支持可持续且具韧性的能源运行中的重要性。源代码可在以下地址获取:https://github.com/wfzheng/2nd-place-solution-neurips-citylearn2023-control
English Abstract
Abstract With the proliferation of renewable energy sources such as solar photovoltaics , managing the complexity of building energy systems while ensuring grid stability, occupant comfort, and resilience to power outages has become increasingly challenging. To address this challenge, this study proposes a hierarchical control framework that optimally coordinates battery energy storage, heat pumps, and domestic hot water (DHW) systems across multiple residential buildings. Forecasting models for disturbances are developed using linear regression, k-nearest neighbors regression, and LightGBM. At the building level, a data-driven model predictive control (MPC) strategy optimally regulates heat pump operations to ensure occupant comfort, complemented by a rule-based controller for DHW storage scheduling. At the microgrid level, a physics-based MPC dispatches battery energy to achieve grid-level objectives such as peak shaving and emission reduction. Coordination between the two levels is achieved through a bottom-up structure: building-level controllers estimate their future electricity demand, which is passed as a disturbance input to the upper-level battery dispatch optimization. The framework performed effectively in the 2023 NeurIPS CityLearn Challenge, securing second place overall and achieving the best performance in public buildings across comfort, emissions, grid efficiency, and resilience metrics. This work provides an effective solution for community-scale energy management , emphasizing the importance of multi-level coordination between building systems and microgrids to support sustainable and resilient energy operations. Source code are available at: https://github.com/wfzheng/2nd-place-solution-neurips-citylearn2023-control
S
SunView 深度解读
该分层控制框架对阳光电源ST系列储能变流器和微网解决方案具有重要应用价值。研究提出的建筑级与微网级双层MPC协调策略,可直接应用于PowerTitan储能系统的削峰填谷和碳减排优化。其数据驱动的预测控制方法可增强iSolarCloud平台的智能调度能力,实现光储热泵多能协同。建筑用电需求预测作为扰动输入传递至上层电池调度的bottom-up架构,为阳光电源社区级能源管理系统提供了多时间尺度协调控制的创新思路,可提升电网友好性和供电韧性指标。