← 返回
光伏发电技术 ★ 5.0

一种考虑功率、能量及波动性的光伏场景聚类新方法

A Novel Clustering Method for Extracting Representative Photovoltaic Scenarios Considering Power, Energy, and Variability

作者 Xueqian Fu · Na Lu · Hongbin Sun · Youmin Zhang
期刊 IEEE Transactions on Power Systems
出版日期 2025年1月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏发电 聚类模型 交替优化算法 代表性场景 验证测试
语言:

中文摘要

由于光伏发电存在显著的不确定性,高比例光伏接入的电网运行场景复杂多样。为准确提取光伏发电的代表性场景,本文提出了一种同时考虑光伏功率、能量和波动性的新型聚类模型。与依赖欧氏距离的传统聚类模型相比,该聚类模型不仅考虑了欧氏距离,还纳入了日光伏发电量和光伏功率曲线特征,能够更准确地量化和分析光伏对电网的影响。为求解所提出的聚类模型,基于线性优化、拉格朗日乘子和特征值分解,提出了一种交替优化算法。本文的亮点在于通过理论证明和仿真算例对所提方法进行了双重验证。从理论上阐述了算法的计算复杂度,并证明了算法的收敛性。利用澳大利亚的实际光伏数据和IEEE 69节点系统对所提方法进行了测试,成功生成了13个代表性光伏发电场景,形态趋势的最大相似距离低至0.3062,确保了最具代表性的光伏发电高峰时段。

English Abstract

Due to the significant uncertainty in photovoltaic (PV) power generation, grid operation scenarios with a high proportion of PV integration are complex and varied. To accurately extract representative scenarios for PV power generation, this paper proposes a novel clustering model that simultaneously considers PV power, energy, and variability. Compared to traditional clustering models that rely on Euclidean distance, the proposed clustering model not only takes into account the Euclidean distance, but also incorporates the daily PV power generation and the characteristics of PV power curves, enabling a more accurate quantification and analysis of the impact of PV on the electricity networks. To solve the proposed clustering model, an alternating optimization algorithm is proposed, based on linear optimization, Lagrange multipliers, and eigenvalue decomposition. The highlights of this paper are the dual verification of the proposed method through theoretical proof and simulation examples. Theoretically, the computational complexity of the algorithm is illustrated, and the convergence of the algorithm is demonstrated. The proposed method is tested using real PV data from Australia and the IEEE 69-bus system, successfully generating 13 representative PV generation scenarios with a maximum similarity distance of the morphological trend as low as 0.3062, ensuring the most representative PV generation peak times.
S

SunView 深度解读

该光伏场景聚类方法对阳光电源iSolarCloud智能运维平台和PowerTitan储能系统具有重要应用价值。通过综合功率、能量和波动性的多维特征提取,可优化光伏电站群的典型日曲线建模,提升SG系列逆变器的功率预测精度和MPPT算法自适应性。对于储能系统,该方法能生成高质量的充放电场景集,优化ST系列储能变流器的能量管理策略和削峰填谷控制。在构网型GFM控制中,准确的光伏出力场景可改善虚拟惯量配置和频率支撑能力。该技术可集成至iSolarCloud平台,实现智能诊断和预测性维护,降低光储系统运行风险,提升电网友好性和经济效益。