← 返回
储能系统技术 ★ 5.0

基于储能边界分析的大规模风电场故障后最优协调电压控制

Optimal Coordinated Post-Event Voltage Control With Energy Storage Boundary Analysis for Large-Scale Wind Farms

作者 Juan Wei · Lai Wei · Sheng Huang · Bozhong Wang · Guohang Huang · Feifan Shen
期刊 IEEE Transactions on Power Systems
出版日期 2024年12月
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 最优协调电压控制 大规模风电场 故障穿越能力 动能存储 模型预测控制
语言:

中文摘要

本文提出了一种结合储能边界分析的最优协调故障后电压控制(OPVC)方案,旨在增强大型风电场(WFs)的故障穿越(FRT)能力,同时降低故障期间的风电损失。通过考虑变流器电流的可行区域,对风力发电机(WT)的动能存储(KES)潜力进行了量化。建立了风电场的分层模型预测控制(MPC)模型,以实现最优的故障穿越性能。在上级控制中,考虑功率指令确定最优功率参考值,并将其作为下级控制器的输入,可使风力发电机的端电压保持在电网规范规定的可行范围内。在下级控制中,对风力发电机的 d 轴和 q 轴电流参考值进行优化,以充分利用最大动能存储能力,快速调节直流母线电压。通过考虑不同工况,验证了所提出的 OPVC 方案的鲁棒性。MATLAB/Simulink 仿真结果表明,与传统控制方案相比,所提出的 OPVC 方案能更有效地抑制直流母线电压波动,最大限度地发挥风力发电机的动能存储和动态电压支撑潜力,从而增强风电场的故障穿越能力。

English Abstract

In this paper, an optimal-coordinated post-event voltage control (OPVC) scheme with energy storage boundary analysis is proposed to enhance the fault ride-through (FRT) ability of large-scale wind farms (WFs) while reducing wind power losses during the fault conditions. The kinetic energy storage (KES) potential of the wind turbine (WT) is quantified by considering the feasible region of converter currents. A hierarchical model predictive control (MPC) model of the WF is developed to achieve optimal FRT performance. In the upper-level, the optimal power references by considering the power command are determined as input to the lower-level controller, and the terminal voltage of WT can be maintained within the feasible range specified by the grid code. In the lower-level, the d- and q-axis currents references of WTs are optimized to quickly regulate the DC bus voltage by fully utilizing the maximum KES capability. The robustness of the proposed OPVC scheme are demonstrated by considering different working conditions. The simulation results in MATLAB/Simulink show that the proposed OPVC scheme can more efficiently suppress the DC bus voltage fluctuations and maximize the KES and dynamic voltage support potential of WTs to enhance the FRT capability of WF compared with the traditional control schemes.
S

SunView 深度解读

该故障后协调电压控制技术对阳光电源ST系列储能变流器与PowerTitan大型储能系统具有重要应用价值。研究提出的储能SOC边界约束策略可直接应用于风光储混合电站的ESS集成方案,优化储能系统在电网故障时的动态响应。通过协调控制算法,可提升SG系列光伏逆变器与储能系统的协同低电压穿越能力,加快故障后电压恢复速度。储能边界分析方法为阳光电源构网型GFM控制技术提供优化思路,在保障电网支撑能力的同时防止储能过充过放,延长电池寿命。该技术可集成至iSolarCloud平台实现智能协调控制,提升新能源电站的电网适应性与安全运行水平。