← 返回
风电变流技术 ★ 5.0

一种原理约束的风场图像生成框架用于短期风电功率预测

A Principle-Constrained Wind Field Image Generation Framework for Short-Term Wind Power Forecasting

作者 Jingxuan Liu · Haixiang Zang · Tao Ding · Lilin Cheng · Zhinong Wei · Guoqiang Sun
期刊 IEEE Transactions on Power Systems
出版日期 2024年8月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电场演化 风电场预测框架 深度学习 风电场图像预测 风电功率预测
语言:

中文摘要

随机且非平稳的风特性给风电带来了相当大的不确定性,这对电网管理和市场出清构成了挑战。研究风场的时空特性对于预测未来风电变化至关重要。然而,目前在更精确地描述风场演变特征方面仍有提升空间。在本研究中,通过多阶偏微分方程建模,可将风场演变过程分解为对流、扩散、环流以及其他未知过程。在先验知识和深度学习的共同驱动下,提出了一种新型的物理单元(Phycell),用于从连续的风场图像中学习时间依赖关系。由此,建立了一个递归风场预测框架,以获取未来多步的风场图像。此外,通过引导注意力机制处理风场预测结果,以共同捕捉未来风电变化的轮廓和非平稳性。与其他先进方法相比,所提出的框架能够生成可靠的风场图像预测结果,平均平均绝对误差降低了9.23%。此外,通过将归一化平均绝对误差降低5.23%,可实现准确的风电功率预测结果。显著的精度提升和可接受的计算负担表明了该方法的适用性。

English Abstract

The stochastic and nonstationary wind nature introduces considerable uncertainty in wind power, challenging the power grid management and market clearing. Investigating the spatial-temporal wind field is critical to predicting future wind power variations. However, there is still room for more accurate descriptions of wind field evolution characteristics. In this study, wind field evolution can be segregated into convection, diffusion, circulation, and other unknown processes through modeling by multi-order partial differential equations. Jointly driven by prior knowledge and deep learning, a novel Phycell was proposed to learn temporal dependencies from consecutive wind field images. Thus, a recursive wind field prediction framework was established to obtain multi-step-ahead wind filed images. Furthermore, the wind field forecasts were handled by guided attention to jointly capture the profiles and non-stationarization of future wind power variations. Compared with other state-of-the-art methods, the proposed framework can generate reliable wind field image forecasting results, with average mean absolute error decrease of 9.23%. In addition, accurate wind power forecasting results can be achieved by decreasing normalized mean absolute error of 5.23%. Obvious accuracy improvement and acceptable computational burden indicate the applicability of the proposed method.
S

SunView 深度解读

该风场图像生成框架对阳光电源的风电变流器和智能运维系统具有重要应用价值。可集成至iSolarCloud平台的预测分析模块,提升风电场发电功率预测精度,优化储能调度策略。对ST系列储能变流器的功率调节控制和PowerTitan系统的容量配置提供更准确的数据支撑。通过提前预知风电出力变化,可实现储能系统的提前调度和平滑控制,提高风储联合运行效率。该技术也可用于完善风电场GFM/GFL控制策略,增强变流器在复杂风况下的并网稳定性。建议将其应用于新一代风电变流器的智能控制算法优化。