← 返回
储能系统技术
★ 5.0
低水头应用中对转式水泵水轮机分析:一项实验研究与数值对比
Analysis of a contra-rotating pump–turbine for low-head applications: An experimental study and numerical comparison
| 作者 | J.P.Hoffstaedt · A.Jarquin Lagun · R.Ansorena Ruizb · D.Schürenkamp · N.Goseberg · D.P.K.Truijend · J.D.M.De Kooningd · K.Stockmand · J.Fahlbeck · H.Nilsson |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An experimental setup for Low-Head PHS including open surface tanks is introduced. |
语言:
中文摘要
摘要 低水头抽水蓄能技术已被认为是电网级储能及提供辅助服务的有前景的解决方案。与传统的高水头系统相比,低水头系统具有不同的特性,包括更大的相对水头变化范围以及水流柱和水泵水轮机自身惯性的增加。这些差异要求开发新型设计,并对系统的稳态性能和瞬态行为进行详细评估。为此,本文设计并构建了一个50kW的实验装置,其中包含一种新型可逆式水泵水轮机的1:22缩尺模型,该模型具有两个对转叶轮和独立的驱动系统。在水轮机模式和水泵模式下,针对不同叶轮转速比开展了稳态性能测试。利用水头系数和扭矩系数,将实验结果与基于一系列计算流体动力学(CFD)模拟建立的数值水泵水轮机模型进行了比较。此外,还测试了工况切换时的瞬态响应,并用于验证一个涵盖管道与驱动系统之间耦合动态效应的一维(1-D)数值模型。随后,利用该已验证的数值模型模拟了水轮机模式下停机过程中的瞬态行为。稳态测试结果显示,水轮机模式下的最高效率达到89%,水泵模式下为92%。实验结果表明,稳态条件下可逆式水泵水轮机(RPT)的特性化表征能够准确预测其性能,尤其是在水轮机模式下,相关系数介于0.9至0.97之间。水泵模式下的结果对比显示实验与数值结果之间存在轻微偏差以及相关性上的差异。类似地,在瞬态测试案例的比较中,实验与模拟所得的流量和转速动态响应之间表现出良好的一致性。研究结果表明,所采用的数值建模方法具备准确评估水泵水轮机稳态与动态性能的能力。最后,停机序列的仿真结果表明,在叶轮按需减速及阀门同步关闭过程中,不会出现危险的压力瞬变风险。
English Abstract
Abstract Low-head pumped hydro storage technology has been identified as a promising contributor to grid-scale energy storage and the provision of ancillary services. Low-head systems have differing characteristics compared to conventional high-head systems, including larger relative head ranges and increased inertias of both, the water column and the pump–turbines. These differences require new designs as well as a detailed evaluation of their steady-state performance and transient behaviour. For this purpose, an experimental 50kW setup incorporating a 1:22 scale version of a novel reversible pump–turbine, with two contra-rotating runners and independent drivetrains , is designed and constructed. Steady-state performance tests are conducted in turbine and pump modes for several speed ratios between runners. Using head and torque coefficients, the results are compared to a numerical pump–turbine model based on a range of computational fluid dynamics simulations . Additionally, the transient response for a change of operating points is tested and used to benchmark a 1-D numerical model covering dynamic effects including coupling between the conduit and drivetrains. The developed numerical model is then used to simulate the transient behaviour during a shutdown sequence in turbine mode. During the steady-state tests a maximum efficiency of 89% was measured in turbine mode and 92% in pump mode. The test results show that the steady-state RPT characterisation accurately predicts the RPT performance, particularly in turbine mode, with correlation coefficient values between 0.9–0.97. The comparison of the pump mode results shows a minor offset and difference in the correlation between experimental and numerical results. Similarly, the comparison of the transient test case shows a good agreement between the experimental and the simulated dynamic response of the flow rate and rotational speeds . The results have shown the capability of the numerical modelling approach to provide accurate results for steady-state and dynamic performance evaluations. Finally, the simulation of the shutdown sequence indicates that there is no risk of dangerous pressure transients during the desired deceleration of the runners and concurrent closure of the valve.
S
SunView 深度解读
该低水头抽水蓄能技术对阳光电源储能系统具有重要参考价值。研究中的双向运行特性、宽负荷范围控制及动态响应建模方法,可应用于ST系列PCS的双向变流控制优化。对转式双转子独立驱动设计理念,可启发PowerTitan系统的模块化拓扑创新。稳态89-92%高效率及快速暂态响应能力,与阳光电源GFM/VSG控制技术在电网调频调峰场景高度契合,可增强储能系统惯量支撑和一次调频能力,提升电网辅助服务性能。