← 返回
储能系统技术
★ 5.0
考虑可再生能源发电预测不确定性对优化混合电站的重要性:一种鲁棒的MILP方法
On the relevance of considering the uncertainty in renewables production forecasts to optimize hybrid power stations: a robust MILP approach
| 作者 | Francesco Superchi · Antonis Moustakis · George Pechlivanoglou · Alessandro Bianchini |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Highlights the relevance of considering the uncertainty in renewables production forecasts to optimize HPSs. |
语言:
中文摘要
摘要 混合电站(Hybrid Power Stations, HPS)通过将可再生能源(RES)与储能系统集成,能够将间歇性发电转化为可调度电力,为提高可再生能源渗透率提供了有前景的解决方案。本研究强调了在优化此类系统运行时考虑发电预测不确定性的关键作用,并提出了一种混合整数线性规划(MILP)框架,该框架能够同时考虑多种可能的发电情景,而非依赖单一预测结果。基于一年的历史预测数据与实际发电数据,本研究开发并测试了三种调度策略:基于规则的策略、使用原始预测的标准MILP方法以及鲁棒MILP方法。其中,鲁棒MILP方法通过引入多个发电情景,提升了调度计划的可靠性,这对于具有严格运行约束的电网尤为有价值。与以往文献不同,本研究深入探讨了生成预测情景区间范围的调节方式以及鲁棒优化中约束松弛的影响。敏感性分析表明,风能预测情景区间设为±20%,太阳能设为±30%,并结合12欧元/MWh的适度偏差惩罚成本,能够在系统可靠性与经济性能之间实现最佳平衡。基于规则的策略年外送电量为235.9 MWh,但存在严重的出力不足(undershooting)问题,导致净收益下降16.3%。标准MILP方法在性能上有所提升,年发电外送量增加且出力不足减少,年净收益达到21.32万欧元,优于基于规则策略的19.75万欧元。鲁棒MILP方法进一步优化了系统表现,年出力不足仅21.8 MWh,年净收益达22.3万欧元(仅为毛收益的3.1%损失),证明该策略能够在降低预测误差相关惩罚的同时,显著提升HPS运行的可靠性。
English Abstract
Abstract Hybrid Power Stations (HPS), integrating RES with storage systems, offer a promising solution to increase the penetration of renewable energy sources (RES) by converting intermittent production into dispatchable power. This study underlines the importance of considering the uncertainty in forecasts of power production to improve the management of these systems and proposes a Mixed-Integer Linear Programming (MILP) framework able to account for multiple possible outcomes, instead of a single one. Using a one-year dataset of historical forecasts and actual production, the study develops and tests three dispatch strategies: rule-based, standard MILP using raw forecasts, and robust MILP. The latter considers several production scenarios to enhance the reliability of the dispatch plan, valuable for grids with strict operational constraints. Unlike previous studies in the literature, this work dives into the aspect of tuning the span in which prediction scenarios are generated and the relaxation of constraints of the robust optimization. Sensitivity analyses showed that a forecast scenario span of ± 20 % for wind and ± 30 % for solar, paired with a moderate divergence penalty of €12/MWh, offered the best balance between system reliability and economic performance. The rule-based strategy exported 235.9 MWh/year but suffered from high undershooting, reducing net earnings by 16.3 %. The standard MILP approach improved performance, increasing annual energy exports and reducing undershooting, resulting in net earnings of €213.2 k/year compared to €197.5 k/year for the rule-based strategy. The robust MILP approach further optimized performance, achieving only 21.8 MWh/year of undershooting and net earnings of €223 k/year (only 3.1 % reduction from gross earnings), demonstrating that this strategy can improve the reliability of HPS operation while reducing penalties associated with forecast errors.
S
SunView 深度解读
该鲁棒MILP优化框架对阳光电源储能系统具有重要应用价值。研究验证了考虑预测不确定性可将欠发电量降至21.8 MWh/年,净收益提升至22.3万欧元,penalty损失仅3.1%。建议将该算法集成至iSolarCloud平台,为ST系列PCS和PowerTitan储能系统提供智能调度策略:针对风光预测设置±20%/±30%场景跨度,配合12欧元/MWh偏差惩罚参数,可显著提升光储混合电站的并网可靠性与经济性,特别适用于严格调度约束的电网场景。