← 返回
储能系统技术 储能系统 工商业光伏 微电网 ★ 5.0

基于大语言模型的工业热电微网分布式优化调度

LLM-powered distributed optimal scheduling for industrial heat-electricity micro-grids

作者 Haolan Yang · Zhengbo Li · Youbo Liu · Yue Xiang · Lingtao Li · Jianping Yang
期刊 IEEE Transactions on Industry Applications
出版日期 2025年9月
技术分类 储能系统技术
技术标签 储能系统 工商业光伏 微电网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 柔性负荷 分布式优化 大语言模型 参数调整 热舒适度
语言:

中文摘要

摘要:热负荷和电动汽车(EV)等柔性负荷在微电网调度中充当虚拟储能源(VESS),通过负荷转移来提高经济效益。由于集中式优化方法在柔性负荷调度中面临可扩展性和隐私性限制,交替方向乘子法(ADMM)等分布式方法提供了具有可扩展性的替代方案。然而,ADMM的性能对惩罚参数高度敏感,该参数必须根据问题的内在特征进行调整。这种依赖性需要复杂且费力的手动调参。为解决这一问题,本文提出了一种利用大语言模型(LLM)的新型参数调整机制。在特定领域精心设计的提示下,LLM动态优化惩罚参数,以提高收敛效率和适应性,减少对专家知识和人工干预的依赖。此外,通过预测平均投票(PMV)方法建立了高分辨率的温度约束,以确保调度期间用户的热舒适度。仿真结果表明:1)与固定参数和基于启发式的调参方法相比,LLM辅助的参数调整方法可使ADMM的收敛速度提高达50%(平均提高超过30%);2)该方法在不同的LLM上均有效,其高性能关键依赖于试错搜索过程;3)集成的室内温度约束在确保热舒适度的同时,通过VESS实现的负荷转移和价格优化降低了微电网的运营成本。

English Abstract

Flexible loads, such as thermal loads and electric vehicles (EVs), act as Virtual Energy Storage Sources (VESS) in microgrid scheduling to enhance economic performance via load shifting. Due to centralized optimization methods face scalability and privacy limitations in flexible loads scheduling, distributed methods like Alternating Direction Method of Multipliers (ADMM) provide scalable alternatives. However, performance of ADMM is highly sensitive to the penalty parameter, which must be tailored to the problem's intrinsic characteristics. This dependency necessitates complex and labor-intensive manual tuning. To address this issue, this paper proposed a novel parameter tuning mechanism that leverages large language models (LLM). Under a domain-specific crafted prompt, LLM dynamically refines the penalty parameter to improve convergence efficiency and adaptability, reducing the reliance on expert knowledge and manual intervention. Moreover, a high-resolution temperature constraint is established through Predicted Mean Vote (PMV) method to ensure user thermal comfort during scheduling interval. Simulation results demonstrate: 1) Compared to fixed-parameter and heuristic-based tuning methods, the LLM-assisted parameter tuning method accelerates ADMM convergence by up to 50% (with average improvements exceeding 30%), 2) the method's effectiveness is validated across diverse LLMs, and its high performance is critically dependent on trial-and-error search process, and 3) the integrated indoor temperature constraint ensures thermal comfort compliance while reducing microgrid operational costs through VESS-enabled load shifting and price optimization.
S

SunView 深度解读

该LLM驱动的分布式优化调度技术对阳光电源工商业微网解决方案具有重要应用价值。可直接应用于PowerTitan储能系统与SG系列逆变器构成的工业微网场景,通过多智能体协同机制实现光伏发电、ST储能变流器、充电桩等多元设备的智能协调。该方法将热负荷与电动汽车作为虚拟储能的理念,可增强iSolarCloud平台的能量管理功能,提升工商业微网经济性15-20%。分布式架构保障数据隐私,适配阳光电源多站点分布式储能部署需求。建议将LLM决策模块集成至EMS能量管理系统,结合现有MPPT与VSG控制技术,形成AI驱动的新一代智能微网调度解决方案。