← 返回
控制与算法 工商业光伏 可靠性分析 ★ 5.0

基于频率相关动态土壤特性设计的安全经济型稳健接地系统

Design and Analysis of Frequency-Dependent Dynamic Soil Properties Based Safe Economical Robust Earthing System

作者 A S L K Gopalamma · Srinu Naik Ramavathu
期刊 IEEE Transactions on Industry Applications
出版日期 2025年6月
技术分类 控制与算法
技术标签 工商业光伏 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 工业设备 电磁干扰 接地系统 频率相关动态土壤特性 系统效能
语言:

中文摘要

包括驱动器、电力电子系统(PES)和分布式控制系统(DCS)在内的工业设备的安全性、可靠性和恢复能力取决于其保护水平。对于这类敏感设备而言,关键要求包括管理电磁干扰(EMI)和确保电能质量。电位均衡不足可能导致电力电子设备和分布式控制系统内的控制器卡和内部电路板出现故障或失灵。本研究针对行业内的一项重大挑战展开应对,提供了有价值的见解。该研究促成了一种安全、经济且稳固的接地系统(SERES)的开发,该系统采用了与频率相关的动态土壤特性(FDDSP),同时还考虑了诸如间距系数(SF)和影响区域(ZoI)等限制因素。拟开展的拓展工作将对测试场地在不同季节和条件下的案例进行研究,着重考察所提出的设计在动态环境下的性能,并通过基于阻抗参数的新型SERES模型评估该系统的有效性。

English Abstract

The safety, reliability, and resilience of industrial equipment, including drives, Power Electronic Systems (PES), and Distributed Control Systems (DCS), are contingent upon their level of protection. Essential requirements for this sensitive equipment include managing Electro-Magnetic Interference (EMI) and ensuring power quality. Inadequate potential equalization can result in failures or malfunctions of controller cards and internal boards within power electronic devices and distributed control systems. This research offers valuable perspectives obtained from tackling a major challenge within the industry. The research led to the development of a safe, cost-effective, and robust earthing system (SERES) that employs frequency-dependent dynamic soil properties (FDDSP), while also taking into account constraints such as spacing factor (SF) and zone of influence (ZoI). The proposed extension work examines the case study across various seasons and conditions at the test site, emphasizing the performance of the proposed design under dynamic circumstances and evaluating the system’s efficacy through a new SERES model based on impedance parameters.
S

SunView 深度解读

该频率相关动态接地技术对阳光电源大型储能系统(PowerTitan)和工商业光伏电站具有重要应用价值。储能变流器和光伏逆变器在故障切换、PWM开关等工况下会产生高频暂态电流,传统静态接地设计无法准确评估高频下的土壤阻抗特性,导致地电位升(GPR)计算偏差。该研究提出的频率相关土壤模型可优化ST系列储能变流器的接地系统设计,在雷击、短路等极端工况下有效降低接触电压和跨步电压,提升人员安全性。同时,该方法可集成至iSolarCloud平台的接地阻抗在线监测模块,实现接地系统健康状态的预测性维护,降低因接地失效导致的设备损坏风险,提升系统可靠性与经济性。