← 返回
光伏发电技术
★ 5.0
一种基于教学-学习优化与简化方法相结合的高效光伏组件性能参数提取与精确预测新方法
A novel hybrid Teaching-Learning-Based optimization and Reduced-Form approach for efficient parameter extraction and accurate prediction of photovoltaic module performance
语言:
中文摘要
准确的太阳能电池建模及其等效模型参数的精确定义对于预测最大输出功率至关重要。本文提出了一种用于提取和预测光伏组件模型五个参数的新型混合方法。该方法将基于最小二乘法的解析技术与教学-学习优化算法相结合,首先利用解析方法将待求参数数量从五个减少至两个,从而有效应对光伏参数提取过程中因高维搜索空间带来的复杂性问题,显著提高了求解效率与精度。所提方法通过多种光伏组件技术的实际数据进行了验证,结果表明其均方根误差值较低:Photowatt-PWP201组件为0.002133 A,STP6-120/36组件为0.001721 A,RTC电池为0.000775 A,STM6-40/36组件为0.013969 A,以及在罗马尼亚布加勒斯特电气工程国家研究与发展研究所光伏系统实验室实测的单晶硅组件为0.0152 A。此外,结果还显示,在美国国家可再生能源实验室提供的单晶硅和多晶硅两种组件技术的数据上,该方法在参考日的最大功率归一化误差低于2.96%。在两个不同地点持续一年的实测与预测最大功率值之间表现出高度相关性,决定系数接近0.9987,表明该模型具有优异的长期预测能力。
English Abstract
Abstract Accurate modeling of solar cells and precise identification of their equivalent model parameters are crucial for predicting maximum power output. This paper presents a novel hybrid method for extracting and predicting the five parameters of a photovoltaic module model. The proposed approach integrates an analytical technique, based on the least square method, to reduce the number of parameters to two with the teaching–learning-based optimization algorithm. This method effectively addresses the complexity of photovoltaic parameter extraction, which generates a high-dimensional research space , enhancing efficiency and accuracy. The proposed method was validated using real data from various module technologies yielding lower root mean square error values: 0.002133 A for the Photowatt-PWP201 module, 0.001721 A for the STP6-120/36 module, 0.000775 A for the RTC cell, 0.013969 A for the STM6-40/36 and 0.0152 A for the monocrystalline module measured at the Laboratory of Photovoltaic Systems, National Institute of Research and Development in Electrical Engineering in Bucharest, Romania. Furthermore, the results demonstrate that this method achieves lower normalized error of maximum power below 2.96% on the reference day for two module technologies, monocrystalline and polycrystalline, from the national renewable energy laboratory. The correlation between measured and predicted maximum power values over one year at two locations was consistently high, with determination coefficients close to 0.9987.
S
SunView 深度解读
该混合优化算法对阳光电源SG系列光伏逆变器的MPPT控制具有重要价值。通过精确提取光伏组件五参数模型并预测最大功率输出(误差<2.96%),可显著提升逆变器功率跟踪精度和发电效率。该方法可集成至iSolarCloud平台,实现不同组件技术(单晶/多晶)的自适应参数辨识,优化MPPT算法在复杂工况下的响应速度。对1500V高压系统和ST储能系统的功率预测与能量管理策略也具有借鉴意义,可提升系统全生命周期的智能运维能力。