← 返回
储能系统技术
★ 5.0
考虑多尺度储能需求的电氢储能系统优化配置:一种双层多步方法
Optimal Sizing of Electric-Hydrogen Energy Storage with Consideration of Multi-scale Energy Storage Requirements: A Two-layer Multi-step Approach
| 作者 | Zihan Sun · Jian Chen · Yang Chen · Wen Zhang · Meijia Wei · Keyu Zhang |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电氢耦合系统 电氢储能优化 sizing 框架 多尺度储能 供需失衡风险 优化效果 |
语言:
中文摘要
与可再生能源集成的电氢耦合系统(EHCSs)在提供清洁能源方面具有显著优势,但在不同时间尺度上面临供需不平衡问题。本文提出了一种用于电氢储能的两层多步优化定容框架,以满足多尺度储能需求。第一步为优化定容层,通过遗传粒子群优化算法(GPSO)确定初始储能容量和聚类数量。第二步为运行层,在年度尺度上对长时储氢进行优化,以最小化不平衡风险并确定每日净氢能。将第二步得到的每日净氢能与原始可再生能源和负荷数据一起,采用基于优化的时间序列方法,并结合验证和补充技术,生成短时典型场景。最后一步是基于这些典型日场景对电氢储能进行优化,并将结果转换为年度成本,通过GPSO进行迭代优化。优化结果表明,与传统方法相比,所提出的方法使供需不平衡风险成本降低了17.63%,每日总运行成本降低了18.3%。此外,所采用的基于优化的时间序列场景处理方法使聚类结果的均方根误差降低了14.43%,总重构误差降低了27.8%。
English Abstract
Electric-hydrogen coupled systems (EHCSs) integrated with renewable energy offer significant advantages for providing clean energy provision yet face supply-demand imbalances across various timescales. This paper proposes a two-layer, multi-step optimal sizing framework for electric-hydrogen energy storage to address multi-scale energy storage requirements. The first step, the optimal sizing layer, determines the initial storage size and the number of clusters via genetic particle swarm optimization (GPSO). The second step, the operational layer, optimizes long-duration hydrogen storage on an annual scale to minimize imbalance risks and determine daily net hydrogen energy. The daily net hydrogen energy derived from the second step, along with the original renewable energy and load data, are subsequently processed using an optimization-based time series method combined with validation and supplementation techniques to generate short-duration typical scenarios. The final step involves optimizing electric-hydrogen energy storage based on the basis of these typical daily scenarios, and converts the results into annual costs for iterative refinement through GPSO. The optimization results demonstrate that the proposed approach achieves a 17.63% reduction in the supply-demand imbalance risk cost and lowers the daily total operation costs by 18.3% compared with the traditional method. Additionally, the adopted optimization-based time series scenario processing method resulted in a 14.43% reduction in the root mean square error of the clustering results and a 27.8% decrease in the total reconstruction error.
S
SunView 深度解读
该双层多步优化方法对阳光电源PowerTitan储能系统和光储一体化解决方案具有重要应用价值。研究提出的多尺度储能需求分析框架,可直接应用于ST系列储能变流器与电解制氢系统的容量配置优化,通过上层经济性优化与下层时序运行验证的迭代机制,能够精准匹配不同时间尺度的功率波动需求。该方法可集成到iSolarCloud平台的储能规划模块,为光伏-储能-制氢耦合项目提供智能配置决策支持,有效提升系统投资回报率和可靠性,特别适用于高比例可再生能源接入场景下的混合储能系统设计,为阳光电源拓展氢能业务提供技术支撑。