← 返回
光伏发电技术 ★ 5.0

基于数据驱动的不同SPV阵列拓扑结构中电气故障对输出功率的全局敏感性分析

A Data-Driven Global Sensitivity Analysis of Output Power to Electrical Faults in Different SPV Array Topologies

作者 Utkarsh Kumar · Sukumar Mishra
期刊 IEEE Transactions on Industry Applications
出版日期 2024年10月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 太阳能光伏阵列 电气故障 全局灵敏度分析 多项式混沌克里金法 Sobol指标
语言:

中文摘要

太阳能光伏(SPV)阵列会出现各种电气故障,如线间故障和接地故障。由于最大功率点跟踪控制以及相关的阻塞二极管和旁路二极管的存在,量化高阻抗阵列故障和低辐照条件下故障期间的功率注入具有挑战性。因此,对输出功率相对于随机SPV阵列故障进行全局灵敏度分析(GSA),对于为可再生能源集成电力系统制定高效的控制、运行和规划策略至关重要。为此,本文提出了一种基于多项式混沌克里金法的数据驱动方法用于全局灵敏度分析。对四种不同的先进SPV阵列拓扑结构,即串并联、全交叉互联、蜂窝状和桥联拓扑进行了分析,以找出在不同故障电阻下功率对各种电气故障的灵敏度。一组稀疏的正交多项式用于近似全局行为,而基于方差分析核的克里金法用于分析系统输出的局部变异性。这形成了一个混合元模型,反映了输出功率与随机SPV阵列故障之间的全局关系。利用所开发的元模型,通过解析计算索博尔指数,以评估输出对输入变化的灵敏度,从而确定阵列拓扑结构下故障的严重程度。所提出的方法对数据的需求量较小,并在一个并网SPV系统的实时硬件装置上进行了验证。与现有方法的比较结果证实了所提方法在准确性和可扩展性方面的有效性。

English Abstract

Solar photovoltaic (SPV) arrays are subject to various electrical faults, such as line-to-line and line-to-ground. Quantifying the power injection during high impedance array faults and faults under low irradiance is challenging due to the maximum power point tracking control and the associated blocking and bypass diodes. Hence, global sensitivity analysis (GSA) of output power to random SPV array faults is imperative to develop efficient control, operation, and planning strategies for a renewable-integrated power system. Therefore, in this paper, a data-driven approach based on the polynomial chaos Kriging method is proposed for GSA. Four different state-of-the-art topologies of SPV array, namely, series-parallel, total-cross-tied, honey-comb, and bridge-linked, have been analyzed to find out the sensitivity of power to various electrical faults at different fault resistances. A sparse set of orthonormal polynomials approximate the global behavior, whereas analysis of variance kernel-based Kriging analyzes the local variability of the system output. This creates a hybrid metamodel that reflects the global relationship between the output power and random SPV array faults. With the developed metamodel, Sobol indices are calculated analytically to assess the sensitivity of outputs to the input variations, thus determining the severity of faults for array topology. The suggested methodology is less data intensive and is verified on a real-time hardware set-up of a grid-connected SPV system. Comparison results with the existing approaches substantiate the efficacy of the proposed method in terms of accuracy and scalability.
S

SunView 深度解读

该全局敏感性分析技术对阳光电源SG系列光伏逆变器的智能诊断功能具有重要应用价值。研究揭示的阵列拓扑与故障类型耦合关系,可直接应用于iSolarCloud云平台的故障诊断算法优化,通过预先建立不同串并联配置下的故障特征库,提升高阻抗故障的早期识别准确率。方差分解法量化故障影响程度的思路,可集成到MPPT算法中实现故障工况下的功率优化控制。对于PowerTitan大型储能系统,该方法有助于设计更合理的电池阵列拓扑结构,增强系统容错能力。建议将数据驱动敏感性分析纳入预测性维护模块,实现从被动响应到主动预警的升级。