← 返回
| 作者 | Daniel Glover · Anamika Dubey |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年10月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 下垂控制 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 主动配电网 深度强化学习 伏-乏控制 智能逆变器 电压调节 |
语言:
中文摘要
随着基于逆变器的资源(IBRs)在有源配电网(ADNs)中大规模接入带来的挑战日益凸显,基于学习的电力系统运行任务解决方案作为潜在手段正受到越来越多的关注。尽管机器学习(ML)方法在评估中能取得较高的准确率,但由于安全担忧和可解释性有限,它们尚未在公用事业规模得到广泛应用。这为能够同时满足性能和监管要求的ML方法提供了发展机遇。为改善这些不足,本文提出了一种基于深度强化学习(DRL)的无模型自适应电压 - 无功控制(VVC)调度框架,用于太阳能光伏(PV)智能逆变器(SIs)的系统级电压调节和损耗降低。该框架利用带有障碍函数(BF)滤波器的奖励塑形方法,将IEEE 1547 - 2018标准规定的B类SI物理边界嵌入到约束马尔可夫决策过程(CMDP)公式中。在IEEE 123母线测试系统上的实验结果表明,所提出的方法能够离线收敛到一个稳健的离散策略,生成符合IEEE 1547 - 2018标准的QV下垂曲线,在过载条件下其性能优于基准方案。
English Abstract
Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.
S
SunView 深度解读
该Volt-VAR下垂曲线学习技术对阳光电源SG系列光伏逆变器的智能控制具有重要应用价值。当前SG逆变器采用固定下垂曲线进行无功调节,难以适应动态电网环境。该研究提出的数据驱动方法可集成至逆变器DSP控制器,通过iSolarCloud平台收集历史运行数据训练神经网络模型,实现下垂参数的自适应优化。技术可直接应用于1500V高压系统的多机协调控制,在大型光伏电站场景下兼顾电压质量与损耗最小化。同时为ST储能变流器的Volt-VAR/Volt-Watt联合控制提供算法优化思路,提升构网型GFM模式下的电压支撑能力,增强产品在高渗透率新能源场景的并网适应性。